Домой / Вопросы и ответы / Защита от статического и атмосферного электричества. Статическое электричество. Атмосферное статическое электричество. Плотность ударов молнии в землю

Защита от статического и атмосферного электричества. Статическое электричество. Атмосферное статическое электричество. Плотность ударов молнии в землю

23.04.2009 19:08 Александр

Защита от статического и атмосферного электричества, молниезащита. Статическое электричество – совокупность явлений, связанных с возникновением, сохранением и релаксацией зарядов. Заряды возникают при трении, дроблении, облучении УФ, химических реакциях. Длительное время заряды сохраняются на поверхности полупроводников и диэлектриков с удельным сопротивлением ρ≥105 Ом*м. Релаксация зарядов происходит в следующих формах – растекание по поверхности и в объёме тела, стекание зарядов с поверхности тела в воздух. Опасность статического электричества заключается в возможности воспламенения горючих смесей, находящихся в помещении. Меры защиты: 1.снижение силового воздействия 2.снижение скоростей перемещения слоёв сыпучих материалов и жидкостей 3.изготовление контактирующих тел из материалов с близким удельным сопротивлением 4.нанесение на поверхность токоведущих тел лакокрасочных покрытий 5.обработка антистатиками 6.увеличение относительной влажности выше 65% 7.заземление оборудования 8.ионизация воздуха вблизи мест образования зарядов с помощью нейтрализаторов различного типа 9.токопроводящая обувь, полы, обивки стульев 10.легкосъёмные токопроводящие браслеты Поражающие факторы атмосферного электричества. 1.прямой удар молнией и защита с помощью молниеотводов 2.явление электромагнитной индукции, т.е. Вследствие возникновения, мощного переменного во времени электрического поля, способного индуцировать ЭДС различной величины в металлических конструкциях, при сближении которых могут происходить электрические разряды на заземлённые предметы, след-но, возникновение опасного электротравматизма, воспламенение горючих смесей и т.п. Для защиты в местах сближения металлических конструкций до 20 см между ними необходимо устраивать металлические перемычки 3.электростатическая индукция, т.е. Наведение заряда противоположного знака по сравнению с зарядом облака на металлических предметах, изолированных от земли. Релаксация зарядов с этих предметов происходит на ближайшие заземлённые предметы, след-но, электротравматизм, воспламенение. 4.занос высоких потенциалов по металло-комуникациям, входящих в здание. Защита: заземление крюков фазных проводов. Все здания по опасности поражения молнией подразделяются на 3 категории: --здания, в которых находятся горючие вещества, воспламенение которых может повлечь значительные разрушения и угрозу жизни людей. Т.е. Здания, в которых есть помещения В-I и В-II. ---- воспламенение которых не может повлечь значительного ущерба, т.е. Здания В-Iа, В-Iб, В-iiа. - Все остальные В зданиях 1 и 2 категории необходима защита от всех 4 поражающих факторов молниезащита типа А. В зданиях 3 категории необходимо устройство молниеотводов (А или Б) и защита от заноса высоких потенциалов. Молниеотводы бывают стержневые, сетчатые, сетчатые с ячейками 6х6, тросовые. Кроме того бывают одиночными и многократными. 1 – опора 2 – молниеприёмник 3 - токоотвод 4 – заземлитель

При прикосновении человека к предмету, несу­щему электрический заряд, происходит разряд по­следнего через тело человека. Величины возникаю­щих при разрядке токов небольшие и они очень кратковременны. Поэтому электротравм не возни­кает. Однако разряд, как правило, вызывает рефлек­торное движение человека, что в ряде случаев может привести к резкому движению, падению человека с высоты.

Кроме того, при образовании заряда с большим электрическим потенциалом вокруг них создается электрическое поле повышенной напряженности, кото­рое вредно для человека. При длительном пребывании человека в таком поле наблюдаются функциональные изменения в центральной нервной, сердечно-сосудистой и других системах.

«У людей, работающих в зоне воздействия электростатического поля, встречаются разнообразные жалобы: на раздражительность, головную боль, нарушение сна, снижение аппетита и др. Характерны своеобразные «фобии», обусловленные страхом ожидаемого разряда. Склонность к «фобиям» обычно сочетается с повышенной эмоциональной возбудимостью». 1

Установлено также благотворное влияние на самочувствие снятия избыточного электростатического заряда с тела человека (заземление, хождение босиком).

Наибольшая опасность электростатических заря­дов заключается в том, что искровой разряд может обладать энергией, достаточной для воспламенения горючей или взрывоопасной смеси. Искра, возникаю­щая при разрядке электростатических зарядов, яв­ляется частой причиной пожаров и взрывов.

Так, удаление из помещения пыли из диэлек­трического материала с помощью вытяжной венти­ляции может привести к накоплению в газоходах электростатических зарядов и отложений пыли. Появление искрового разряда в этом случае может привести к воспламенению или взрыву пыли. Из­вестны случаи очень серьезных аварий на предпри­ятиях в результате взрывов в системах вентиляции.

При перевозке легковоспламеняющихся жидко­стей, при их перекачке по трубопроводам, сливе из цистерны или за счет плескания жидкости накап­ливаются электростатические заряды, и может возникнуть искра, которая воспламенит жидкость.

Наибольшую опасность статическое электричес­тво представляет на производстве и на транспорте, особенно при наличии пожаро-взрывоопасных смесей, пылей и паров легковоспламеняющихся жидкостей.

В бытовых условиях (например, при хождении по ковру) накапливаются небольшие заряды, и энергии возникших искровых разрядов недоста­точно для инициирования пожара в обычных усло­виях быта.

ФИЗИЧЕСКАЯ ПРИРОДА И ОПАСНЫЕ ФАКТОРЫ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА

Атмосферное электричество образуется и концентрируется в облаках - образованиях из мелких водяных частиц, находящихся в жидком и твердом состоянии.

Площадь океанов и морей составляет 71 % поверхности земного шара. Каждый 1 см 2 поверхности Земли в течение года в среднем получает 460 кДж солнечной энергии. Подсчитано, что из этого количества 93 кДж/(см*год) расходуется на испарение воды с поверхности водных бассейнов. Поднимаясь вверх, водяные пары охлаждаются и конденсируются в мельчайшую водяную пыль, что сопровождается выделением теплоты парообразования (2260 кДж/л). Образовавшийся избыток внутренней энергии частично расходуется на эмиссию частиц с поверхности мельчайших водяных капелек. Для от

деления от молекулы воды протона (Н) требуется 5,1 эВ, для отделения электрона -12,6 эВ, а для отделения молекулы от кристалла льда достаточно 0,6 эВ, поэтому основными эмитируемыми частицами являются молекулы воды и протоны. Количество эмитируемых протонов пропорционально массе частиц. Результирующий поток протонов всегда направлен от более крупных капелек к мелким. Соответственно более крупные капельки приобретают отрицательный заряд, а мелкие - положительный. Чистая вода - хороший диэлектрик и заряды на поверхности капелек сохраняются длительное время. Более крупные тяжелые отрицательно заряженные капельки образуют нижний отрицательно заряженный слой облака. Мелкие легкие капельки объединяются в верхний положительно заряженный слой облака. Электростатическое притяжение разноименно заряженных слоев поддерживает сохранность облака как целого.

Эмиссия протонов возникает дополнительно при кристаллизации водяных частиц (превращении их в снежинки, градинки), так как при этом выделяется теплота плавления, равная 335 кДж/л. При соударениях капелек, снежинок, градинок работа ветра в конечном счете приводит к эмиссии протонов, к изменению величины заряда частиц. Следовательно, атмосферное электричество (АтЭ) и статическое электричество (СтЭ) имеют одинаковую физическую природу. Различаются они масштабом образования зарядов и знаком эмитируемых частиц (электроны или протоны).

О единстве природы АтЭ и СтЭ свидетельствуют опытные данные. Сухой снег представляет собой типичное сыпучее тело; при трении снежинок друг о друга и их ударах о землю и о местные предметы снег должен электризоваться, что и происходит в действительности. Наблюдения на Крайнем Севере и в Сибири показывают, что при низких температурах во время сильных снегопадов и метелей электризация снега настолько велика, что происходят зимние грозы, в облаках снежной пыли бывают виднысиние и фиолетовые вспышки, наблюдается свечение остроконечных предметов, образуются шаровые молнии. Очень;ильные метели иногда заряжают телеграфные провода так сильно, что подк:лючаемые к ним электролампочки светятся полным накалом. Те же явления наблюдаются во время сильных пыльных (песчанных) бурь.

Наличие множества взаимодействующих факторов дает сложную картину распределения зарядов АтЭ в облаках и их частях. По экспериментальным данным нижняя часть облаков чаще всего имеет отрицательный заряд, а верхняя - положительный, но может иметь место и противоположная полярность частей облака. Облака могут также нести преимущественно заряд одного знака.

Заряд облака (части облака) образуют мельчайшие одноименно заряженные частицы воды (в жидком и твердом состоянии), размещенные в объеме нескольких км 3 .

Электрический потенциал грозового облака составляет десятки миллионов вольт, но может достигать 1 млрд. В. Однако общий заряд облака равен нескольким кулонам.

Основной формой релаксации зарядов АтЭ является молния- электрический разряд между облаком и землей или между облаками (частями облаков). Диаметр канала молнии равен примерно 1 см, ток в канале молнии составляет десятки килоампер, но может достигать 100 кА, температура в канале молнии равна примерно 25 000°С, продолжительность разряда составляет доли секунды.

Молния является мощным поражающим опасным фактором. Прямой удар молнии приводит к механическим разрушениям зданий, сооружений, скал, деревьев, вызывает пожары и взрывы, является прямой или косвенной причиной гибели людей. Механические разрушения вызываются мгновенным превращением воды и вещества в пар высокого давления на путях протекания тока молнии в названных объектах. Прямой удар молнии называют первичным воздействием атмосферного электричества.

К вторичному воздействию АтЭ относят: электростатическую и электромагнитную индукции; занос высоких потенциалов в здания и сооружения.

Рассмотрим опасные факторы вторичного воздействия АтЭ. Образовавшийся электростатический заряд облака наводит (индукцирует) заряд противоположного знака на предметах, изолированных от земли (оборудование внутри и вне зданий, металлические крыши зданий, провода ЛЭП, радиосети и т. п.). Эти заряды сохраняются и после удара молнии. Они релаксируют обычно путем электрического разряда на ближайшие заземленные предметы, что может вызвать электротравматизм людей, воспламенение горючих смесей и взрывы. В этом заключается опасность электростатической индукции.

Явление электромагнитной индукции заключается в следующем. В канале молнии протекает очень мощный и быстро изменяющийся во времени ток. Он создает мощное переменное во времени магнитное поле. Такое поле индуцирует в металлических контурах электродвижущую силу разной величины. В местах сближения контуров между ними могут происходить электрические разряды, способные воспламенить горючие смеси и вызвать электротравматизм.

Занос высоких потенциалов в здание происходит в результате прямого удара молнии в металлокоммуникации, расположенные на уровне земли или над ней вне зданий, но входящие внутрь зданий. Здесь под металлокоммуникациями понимают рельсовые пути, водопроводы, газопроводы, провода ЛЭП и т. п. Занесение высоких потенциалов внутрь здания сопровождается электрическими разрядами на заземленное оборудование, что может привести к воспламенению горючих смесей и электротравматизму людей.

ЗАЩИТА ОТ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА

Требуемая степень защиты зданий, сооружений и открытых установок от воздействия атмосферного электричества зависит от взрывопожароопасности названных объектов и обеспечивается правильным выбором категории устройства молниезащиты и типа зоны защиты объекта от прямых ударов молнии.

Степень взрывопожароопасности объектов оценивается по классификации Правил устройства электроустановок (ПУЭ). Инструкция по проектированию и устройству молниезащиты СН 305- 77 устанавливает три категории устройства молниезащиты (I, II, III) и два типа (А и Б) зон защиты объектов от прямых ударов молнии. Зона защиты типа А обеспечивает перехват на пути к защищаемому объекту не менее 99,5 % молний, а типа Б - не менее 95 %.

По I категории организуется защита объектов, относимых по классификации ПУЭ к взрывоопасным зонам классов В-1 и В-П (см. гл. 20). Зона защиты для всех объектов (независимо от места расположения объекта на территории СССР и от интенсивности грозовой деятельности в месте расположения) применяется только типа А.

По II категории осуществляется защита объектов, относимых по классификации ПУЭ к взрывоопасным зонам классов В-1а, В-16 и В-Па. Тип зоны защиты при расположении объектов в местностях со средней грозовой деятельностью 10 ч и более в год определяется по расчетному количеству N поражений объекта молнией в течение года:

при N<=1 достаточна зона защиты типа Б; при N> 1 должна обеспечиваться зона защиты типа А. Порядок расчета величины N показан в нижеприведенном примере. Для наружных технологических установок и открытых складов, относимых по ПУЭ к зонам класса В-1г, на всей территории СССР (без расчета N) принимается зона защиты типа Б.

По III категории организуется защита объектов, относимых по ПУЭ к пожароопасным зонам классов П-1, П-2 и П-2а. При расположении объектов в местностях со средней грозовой деятельностью 20 ч и более в год и при N> 2 должна обеспечиваться зона защиты типа А, в остальных случаях - типа Б. По III категории осуществляется также молниезащита общественных и жилых зданий,башен, вышек, труб, предприятий, зданий и сооружений сельскохозяйственного назначения. Тип зоны защиты этих объектов определяется в соответствии с указаниями СН 305-77.

Объекты I и II категорий устройства молниезащиты должны быть защищены от всех четырех видов воздействия атмосферного электричества, а объекты III категории - от прямых ударов молнии и от заноса высоких потенциалов внутрь зданий и сооружений.

Защита от электростатической индукции заключается в отводе индуцируемых статических зарядов в землю путем присоединения металлического оборудования, расположенного внутри и вне зданий, к специальному заземлителю или к защитному заземлению электроустановок; сопротивление заземлителя растеканию тока промышленной частоты должно быть не более 10 Ом.

Для защиты от электромагнитной индукции между трубопроводами и другими протяженными металлокоммуникациями в местах их сближения на расстояние 10 см и менее через каждые 20 м устанавливают (приваривают) металлические перемычки, по которым наведенные токи перетекают из одного контура в другой без образования электрических разрядов между ними.

Защита от заноса высоких потенциалов внутрь зданий обеспечивается отводом потенциалов в землю вне зданий путем присоединения металлокоммуникации на входе в здания к заземлителям защиты от электростатической индукции или к защитным заземлениям электроустановок.

Для защиты объектов от прямых ударов молнии сооружаются молниеот-воды, принимающие на себя ток молнии и отводящие его в землю.

Объекты I категории молниезащиты защищают от прямых ударов молнии отдельно стоящими стержневыми, тросовыми молниеотводами или молниеотводами, устанавливаемыми на защищаемомобъекте, но электрически изолированными от него.

Молниезащита - эффективное средство защиты и повышения устойчивости функционирования объектов при воздействии на них атмосферного статического электричества. Она включает комплекс мероприятий и устройств, предназначенных для обеспечения безопасности людей, предохранения зданий, сооружений, оборудования и материалов от взрывов, загораний и разрушений, возможных при воздействии молний.

Для всех зданий и сооружений, не связанных с производством и хранением взрывчатых веществ, а также для линий электропередач и контактных сетей, проектирование и изготовление молниезащиты должно выполняться согласно РД 34.21.122-87.

По степени защиты здания и сооружения подразделяются на три категории: здания и сооружения, отнесённые к I и II категории молниезащиты, должны быть защищены от прямых ударов молнии, вторичных проявлений молнии и заноса высокого потенциала через наземные, надземные и подземные металлические коммуникации; здания и сооружения, отнесённые к III категории молниезащиты, должны быть защищены от прямых ударов молнии и заноса высокого потенциала через наземные и подземные металлические коммуникации.

Для создания зон защиты применяют одиночный стержневой молниеотвод, двойной стержневой молниеотвод, многократный стержневой молниеотвод, одиночный или двойной тросовый молниеотвод.

Сила землетрясений от 1 до 4 баллов не вызывает повреждение зданий и сооружений, а также остаточных явлений в грунтах и изменения режима грунтовых и наземных вод. Землетрясение силой в 1 балл вызывает незаметное сотрясение почвы, колебание которой регистрируются только приборами. Землетрясения силой 2 балла отмечаются некоторыми, очень чуткими лицами, находящимися в полном покое. При землетрясение 3 балла внимательными наблюдателями замечается очень легкое покачивание висячих предметов. При землетрясении 4 балла наблюдается легкое раскачивание висячих предметов и неподвижных автомашин; слабый звон плотно поставленной неустойчивой посуды. Землетрясение в 4 балла распознаётся большинством людей, находящихся внутри здания. Землетрясение силой 5 баллов вызывает лёгкий скрип полов и перегородок; дребезжание стёкол, осыпание побелки, Движение незакрытых дверей и окон, на поверхности непроточных водоёмов образуются небольшие волны. Заметно качаются висячие предметы, наблюдается выплёскивание воды из наполненных сосудов, возможна остановка маятников часов. Землетрясение силой 6 баллов лёгкие повреждения многих зданий, в одноэтажных кирпичных, каменных и саманных домах наблюдаются значительные повреждения. В сырых грунтах образуются трещины шириной до 1 см, отмечается небольшое изменение дебита источников и уровня воды в колодцах. В помещениях качаются висячие предметы, иногда падают книги, посуда, лёгкая мебель сдвигается, передвижение людей неустойчиво. Землетрясение силой 7 баллов вызывает значительные повреждения зданий, в некоторых случаях их разрушения. На дорогах появляются трещины, наблюдаются нарушение стыков трубопроводов, повреждение каменных оград. В сухих грунтах образуются тонкие трещины, возможны оползни и обвалы. Изменяется дебит источников и уровней грунтовых вод. Возникают новые и пропадают старые источники воды. В помещениях сильно качаются висячие предметы, легкая мебель сдвигается, падают книги, посуда и вазы. Передвижение людей без дополнительной опоры затруднено. Все люди покидают помещение. Землетрясение силой 8 баллов вызывают значительные повреждения большинства зданий. В некоторых полные разрушения. Образуется большое количество трещин на склонах гор и в сырых грунтах; наблюдаются осыпи, оползни и горные обвалы. Вода в водоемах мутная; меняется дебит источников и уровней воды в колодцах. В помещениях сдвигается и частично опрокидывается мебель, лёгкие предметы подскакивают и опрокидываются. Люди с трудом удерживаются на ногах. Все выбегают из помещений. Землетрясение силой 9 баллов вызывают искривления железнодорожных путей, повреждение насыпей дорог, разрушение дымовых труб, башен. Большинство зданий обрушиваются. В грунтах образуются трещины до 10 см; наблюдаются горные обвалы, оползни, небольшие грязевые извержения, в водоёмах большое волнение. В помещениях опрокидывается и ломается мебель. Наблюдается большое беспокойство животных. Землетрясение силой 10 баллов вызывают обрушение многих зданий, дамбы и насыпи получают значительные повреждения, на дорожном полотне трещины и деформации, обрушение труб, башен, памятников, оград. Возникают трещины в грунтах до 1 м. Наблюдается обвал скал и морских берегов. Наблюдается возникновение новых озёр, прибоя и выплёскивания воды в водоёмах и реках. В помещениях многочисленные повреждения предметов домашнего обихода. Животные мечутся и воют. Землетрясение силой 11 баллов вызывают общее разрушение зданий, разрушение насыпей на больших протяжениях. Трубопроводы проходят в полную негодность. На больших протяжениях железнодорожные пути приходят в полную непригодность. На поверхности земли наблюдаются многочисленные трещины и вертикальные перемещения пластов. Большие обвалы, оползни. Сильно меняется режим водоисточников и водоёмов и уровень грунтовых вод. В помещениях наблюдается гибель значительной части населения, животных и имущества под обломками зданий. Землетрясение силой 12 баллов вызывает общее разрушение зданий и сооружений. Значительная часть населения гибнет от оползней. В грунте наблюдаются вертикальные и горизонтальные разрывы и сдвиги. Образуются озёра, водопады, изменяются русла рек. Растительность и животные погибают от обвалов и осыпей в горных районах.

Статическое электричество

СтЭ (статическое электричество) – совокупность явлений, связанных с образованием, сохранением и релаксацией электрических зарядов на поверхности и в объеме диэлектрических и полупроводниковых материалов и изделий.

Заряды СтЭ образуются при деформации (изгибе, растяжении, резании,….) и дроблении твердых тел, при разбрызгивании и истечении жидкостей, при перемещении (трении) твердых тел, слоев сыпучих и жидких тел, при испарении, кристаллизации, при облучении, при химических реакциях.

Заряды СтЭ образуются при перераспределении заряженных (электронов) частиц в телах. Обычно атомы химических элементов и тела являются электрически нейтральными.

Заряды СтЭ возникают при передаче телу избыточной энергии (любым способом). Избыточная энергия вызывает нагрев тел. Остывая, они передают энергию окружающей среде: колебаниями атомов, электромагнитным излучением, эмиссией электронов, ионов и ионрадикалов.

Самая большая доля при передаче энергии при эмиссии электронов (до 90 % при теплопереносе в металлах). Обычно сопровождается излучением квантов электромагнитных излучений.

В строительстве в ходе выполнения дробления, деформации, трения сыпучих и твердых тел энергия преобразуется в избыточную тепловую. Эта работа сопровождается экзоэмиссией электронов с поверхности тел. Это явление – «эффект Крамера». При трении возникают встречные потоки электронов. Разность интенсивности встречных потоков вызывает электризацию тел.

Если тела выполнены из одного материала, то электризация не происходит, т.к. встречная потоки электронов полностью компенсируются.

Конечный результат электризации – образование двойного электрического слоя.

Электризации способствуют:

Увеличение силового взаимодействия

Увеличение скорости перемещения твердых, сыпучих и жидких тел

Увеличение различия в электросопротивлении

Двойной электрический слой – неустойчивое явление. Происходит постоянная релаксация зарядов:

Растекание зарядов по поверхности тела

Распределение в объеме

Стекание зарядов в воздух

Искровые разряды (наиболее эффективная форма релаксации)

Сохранение зарядов СтЭ зависит от объемного удельного электрического сопротивления материалов (r, Ом м):

при r>10 5 – материал является диэлектриком или полупроводником, способен долго хранить заряды (капрон r=10 12 Ом м).

Искровые разряды могут стать источником зажигания паро-, газо-, и пылевоздушных смесей.

Электрический заряд – q = Cj (Кл), где С – электрическая емкость тела относительно земли, j - потенциал тела (В) относительно земли. Ток электризации I=jn ср, где n ср - среднее число разрядов в секунду.

Энергия разряда: W = 0.5 C j 2 = 0.5 q j (Дж)

Минимальная энергия зажигания (W з) – наименьшее значение энергии электрического разряда, при которой происходит зажигание горючей смеси.

Электростатическая искробезопасность (ЭСИБ) считается обеспеченной, если в результате принятых мер, энергия разряда не превышает 0.25 W з.

Величина W з (мДж) для: бензина – 0.15, метана – 028, оксид углерода - 8, хлопковый пух – 10, древесная мука и алюминиевая пыль – 20.

В соответствии с ПУЭ (гл. 7) установлены взрывоопасные зоны классов: B-Ia, B-Iб, B-Iв, B-Iг, B-II, B-IIa. Это такие зоны помещения, оборудования и электроустановок, в которых могут образоваться взрывоопасные смеси газов, паров ЛВЖ, горючих пылей и волокон с воздухом (при нормальной работе или при аварии). Электризация может привести к разрядам, пожарам и взрывам.


Защита от статического электричества

Классическая схема мер защиты

1. Исключить опасность - исключить образование статического электричества или снизить его до безопасного уровня:

Изготовление контактирующих частей из материалов с близкими величинами электросопротивления;

Уменьшение силового воздействия;

Уменьшение скоростей (например, тормозные устройства для падающих сыпучих);

Нефтепродукты, бензолы легко электризуются. Поэтому ограничивается скорость истечения: 10 м/сек при r 5 Ом м, 5 м/сек при r 9 Ом м; нефтепродукты не допускается наливать свободно падающей струей, сливную трубу располагать у дна, не допускать интенсивного перемешивания;

2. Удаление от опасности: автоматизация и механизация производственных процессов, т.е. без участия человека

3. Ограждение опасности - мероприятие, направленные на быструю безразрядную релаксацию зарядов:

Заземление металлического и электропроводного оборудования, присоединение к заземлителю не менее чем в двух точках. Сопротивление не более 10 Ом;

– создание единой электрической цепи, обеспечение электропроводности во фланцах, покрытие пластиковых вставок электропроводящими материалами;

Добавление токопроводящих примесей;

Лакокрасочные токопроводящие покрытия;

Добавление в электризующиеся жидкости антистатических добавок (слабых электролитов)

Корпуса автоцистерн при перекачке топлива присоединяют к стационарному заземлителю, при движении – цепь;

Увеличение относительной влажности до 65…70 %. Эффективно, если материалы гидрофильны, т.е. способны образовать на поверхности тончайшую водяную пленку. Она экранирует эмиссию электронов и способствует релаксации;

Ионизация воздуха в зоне образования зарядов: Индукционные нейтрализаторы – создание электростатического поля высокой напряженности. С острия электродов-ионизаторов стекают потоки электронов, Радиоизотопные нейтрализаторы: a-излучение (положительно заряженные ядра атомов гелия, толщина слоя ионизации 40 мм) и b-излучение (электроны, слой ионизации - 400 мм);

4. Ограждение человека

Антистатическая одежда и обувь;

Токопроводящие полы и площадки;

Заземленные токопроводящая обивка стульев и электропроводные браслеты;

5. Организационные мероприятия: обучение, инструктаж, …


Атмосферное электричество. Молниезащита

Образуется в облаках – из мелких водяных частиц.

Солнечная энергия – 460 кДж на 1 см 2 в год поверхности Земли. 93 кДж/(см 2 год) на испарение воды из океанов. Водяной пар поднимается и конденсируется в водяную пыль с выделением теплоты (2260 кДж/л). Избыток энергии частично расходуется на эмиссию электронов с поверхности водяных капель. В основном эмитируют протоны и капельки воды из кристаллов льда. Протоны эмитируют из более крупных капель к более мелким.

Чистая вода – хороший диэлектрик. Заряды сохраняются долго. Тяжелые отрицательно заряженные капельки образуют нижний слой облаков. Мелкие легкие – верхний. Электростатическое притяжение разноименно заряженных частиц поддерживает сохранность облаков.

Эмиссия протонов возникает и при кристаллизации водяных частиц. Соударение кристаллов льда, снежинок, градин, ветер – приводит к избытку энергии и эмиссии протонов. Атмосферное электричество имеет ту же природу, что и статическое (например, грозы на крайнем севере во время сильных снегопадов или бурь, в облаках возникает сияние и вспышки, свечение, шаровые молнии). Иногда заряжаются провода.

По экспериментальным данным, нижняя часть облаков чаще всего имеет отрицательный заряд, верхняя – положительный, а бывают облака одного заряда.

Заряд облака образуют мельчайшие одноименно заряженные частицы воды. Электрический потенциал грозового облака составляет десятки миллионов вольт, может достигать и 1 млрд. вольт.

Основная форма релаксации – электрический разряд между облаками и между облаком и землей. Диаметр канала около 1 см, ток в канале десятки килоампер, температура 25000 о С, время разряда – доли секунды.

Первичное воздействие атмосферного электричества – прямой удар молнии – мощный поражающий фактор - механические разрушения зданий, сооружений, деревьев, пожары, взрывы, поражения людей,…. Причина – практически мгновенное превращение воды и веществ в зоне молниевого канала в пар и газ высокой температуры и высокого давления.

Вторичные воздействия атмосферного электричества:

- Электростатическая индукция – наведение заряда противоположного знака на предметах, изолированных от земли, от электростатического заряда облака, в поле которого находятся эти предметы. Индуцируется заряд противоположного знака на крышах, оборудовании, провода ЛЭП, … Заряды сохраняются и после разряда облака. Они могут релаксировать в виде искрового разряда на ближайшие заземленные предметы, и вызвать электротравматизм, взрыв или пожар.

- Электромагнитная индукция – в канале молнии протекает мощный, быстро меняющийся во времени ток, который создает вокруг себя изменяющееся электромагнитное поле. Это поле индуцирует в металлических контурах ЭДС и протекание тока, может вызвать искровой разряд … электротравматизм, взрыв или пожар.

- Занос высоких потенциалов – прямой удар молнии в металлоконструкции (рельсовые пути, водопроводы, газопроводы, провода ЛЭП, и т.д.), расположенные на уровне или над уровнем земли, но входящие в здание. Занесение высоких потенциалов в здание приводит к образованию разрядов на заземленное оборудование … электротравматизм, взрыв или пожар.


Защита от атмосферного электричества осуществляется в соответствии с «Инструкцией по устройству молниезащиты зданий, сооружений и промышленных коммуникаций. СО 153-34.21.122-2003 » .

Все объекты могут подразделяться на обычные и специальные.

Обычные объекты - жилые и административные строения, а также здания и сооружения, высотой не более 60 м, предназначенные для торговли, промышленного производства, сельского хозяйства.

Специальные объекты :

объекты, представляющие опасность для непосредственного окружения;

объекты, представляющие опасность для социальной и физической окружающей среды (объекты, которые при поражении молнией могут вызвать вредные биологические, химические и радиоактивные выбросы);

прочие объекты, для которых может предусматриваться специальная молниезащита, например, строения высотой более 60 м, игровые площадки, временные сооружения, строящиеся объекты.

В табл. 2.1 даны примеры разделения объектов на четыре класса.

Примеры классификации объектов

Таблица 2.1

Тип объекта

Последствия удара молнии

Жилой дом

Отказ электроустановок, пожар и повреждение имущества. Обычно небольшое повреждение предметов, расположенных в месте удара молнии или задетых ее каналом

Первоначально - пожар и занос опасного напряжения, затем - потеря электропитания с риском гибели животных из-за отказа электронной системы управления вентиляцией, подачи корма и т. д.

Театр; школа; универмаг; спортивное сооружение

Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий

Банк; страховая компания; коммерческий офис

Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий. Потери средств связи, сбои компьютеров с потерей данных

Больница; детский сад; дом для престарелых

Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий. Потери средств связи, сбои компьютеров с потерей данных. Необходимость помощи тяжелобольным и неподвижным людям

Промышленные предприятия

Дополнительные последствия, зависящие от условий производства - от незначительных повреждений до больших ущербов из-за потерь продукции

Музеи и археологические памятники

Невосполнимая потеря культурных ценностей

Специальный с ограниченной опасностью

Средства связи; электростанции; пожароопасные производства

Недопустимое нарушение коммунального обслуживания (телекоммуникаций). Косвенная опасность пожара для соседних объектов

Специальный, представляющий опасность для непосредственного окружения

Нефтеперерабатывающие предприятия; заправочные станции; производства петард и фейерверков

Пожары и взрывы внутри объекта и в непосредственной близости

Специальный, опасный для экологии

Химический завод; атомная электростанция; биохимические фабрики и лаборатории

Пожар и нарушение работы оборудования с вредными последствиями для окружающей среды


При строительстве и реконструкции для каждого класса объектов требуется определить необходимые уровни надежности защиты от прямых ударов молнии (ПУМ). Например, для обычных объектов может быть предложено четыре уровня надежности защиты, указанные в табл. 2.2.

Уровни защиты от ПУМ для обычных объектов

Таблица 2.2

Уровень защиты

Надежность защиты от ПУМ

Для специальных объектов минимально допустимый уровень надежности защиты от ПУМ устанавливается в пределах 0,9-0,999 в зависимости от степени его общественной значимости и тяжести ожидаемых последствий от ПУМ по согласованию с органами государственного контроля.

Соответствие параметров тока молнии и уровней защиты

Таблица 2.3

Параметр молнии

Уровень защиты

Пиковое значение тока I , кА

Полный заряд Q полн, Кл

Заряд в импульсе Q имп, Кл

Удельная энергия W /R , кДж/Ом

Средняя крутизна di /dt 30/90% , кА/мкс

2.3.3. Плотность ударов молнии в землю

Плотность ударов молнии в землю, выраженная через число поражений 1 км 2 земной поверхности за год, определяется по данным метеорологических наблюдений в месте размещения объекта.

Если же плотность ударов молнии в землю N g неизвестна, ее можно рассчитать по следующей формуле, 1/(км 2 × год):

N g = 6,7 × Т d /100, (2.1)

где Т d - средняя продолжительность гроз в часах, определенная по региональным картам интенсивности грозовой деятельности.


3. ЗАЩИТА ОТ ПРЯМЫХ УДАРОВ МОЛНИИ

3.1. Комплекс средств молниезащиты

Комплекс средств молниезащиты зданий или сооружений включает в себя устройства защиты от прямых ударов молнии (внешняя молниезащитная система - МЗС) и устройства защиты от вторичных воздействий молнии (внутренняя МЗС).

Внешняя МЗС может быть изолирована от сооружения (отдельно стоящие молниеотводы - стержневые или тросовые, а также соседние сооружения, выполняющие функции естественных молниеотводов) или может быть установлена на защищаемом сооружении и даже быть его частью.

Внутренние устройства молниезащиты предназначены для ограничения электромагнитных воздействий тока молнии и предотвращения искрений внутри защищаемого объекта.

Токи молнии, попадающие в молниеприемники, отводятся в заземлитель через систему токоотводов (спусков) и растекаются в земле.

3.2. Внешняя молниезащитная система

Внешняя МЗС в общем случае состоит из молниеприемников, токоотводов и заземлителей.

Материал и минимальные сечения элементов внешней МЗС

Таблица 3.1

Уровень защиты

Материал

Сечение, мм 2

молниеприемника

токоотвода

заземлителя

Алюминий

Не применяется

3.2.1. Молниеприемники

Молниеприемники могут состоять из произвольной комбинации следующих элементов: стержней, натянутых проводов (тросов), сетчатых проводников (сеток).

3.2.1.2. Естественные молниеприемники

Следующие конструктивные элементы зданий и сооружений могут рассматриваться как естественные молниеприемники:

а) металлические кровли защищаемых объектов при условии, что:

электрическая непрерывность между разными частями обеспечена на долгий срок;

толщина металла кровли составляет не менее величины t , приведенной в табл. 3.2, если необходимо предохранить кровлю от повреждения или прожога;

толщина металла кровли составляет не менее 0,5 мм, если ее необязательно защищать от повреждений и нет опасности воспламенения находящихся под кровлей горючих материалов;

кровля не имеет изоляционного покрытия. При этом небольшой слой антикоррозионной краски или слой 0,5 мм асфальтового покрытия, или слой 1 мм пластикового покрытия не считается изоляцией;

б) металлические конструкции крыши (фермы, соединенная между собой стальная арматура);

в) металлические элементы типа водосточных труб, украшений, ограждений по краю крыши и т. п., если их сечение не меньше значений, предписанных для обычных молниеприемников;

г) технологические металлические трубы и резервуары, если они выполнены из металла толщиной не менее 2,5 мм и проплавление или прожог этого металла не приведет к опасным или недопустимым последствиям;

д) металлические трубы и резервуары, если они выполнены из металла толщиной не менее значения t , приведенного в табл. 3.2, и если повышение температуры с внутренней стороны объекта в точке удара молнии не представляет опасности.

Толщина кровли, трубы или корпуса резервуара, выполняющих функции естественного молниеприемника

Таблица 3.2

3.2.2. Токоотводы

3.2.2.1. Общие соображения

В целях снижения вероятности возникновения опасного искрения токоотводы должны располагаться таким образом, чтобы между точкой поражения и землей:

а) ток растекался по нескольким параллельным путям;

б) длина этих путей была ограничена до минимума.

3.2.2.2. Расположение токоотводов в устройствах молниезащиты, изолированных от защищаемого объекта

Если молниеприемник состоит из отдельно стоящих горизонтальных проводов (тросов) или из одного провода (троса), на каждый конец троса требуется минимум по одному токоотводу.

Если молниеприемник представляет собой сетчатую конструкцию, подвешенную над защищаемым объектом, на каждую ее опору требуется не менее одного токоотвода.

3.2.2.3. Расположение токоотводов при неизолированных устройствах молниезащиты

Токоотводы располагаются по периметру защищаемого объекта таким образом, чтобы среднее расстояние между ними было не меньше значений, приведенных в табл. 3.3.

Средние расстояния между токоотводами в зависимости от уровня защищенности

Таблица 3.3

Уровень защиты

Среднее расстояние, м

3.2.2.5. Естественные элементы токоотводов

Следующие конструктивные элементы зданий могут считаться естественными токоотводами:

а) металлические конструкции при условии, что:

электрическая непрерывность между разными элементами является долговечной и соответствует требованиям п. 3.2.4.2;

они имеют не меньшие размеры, чем требуются для специально предусмотренных токоотводов. Металлические конструкции могут иметь изоляционное покрытие;

б) металлический каркас здания или сооружения;

в) соединенная между собой стальная арматура здания или сооружения;

г) части фасада, профилированные элементы и опорные металлические конструкции фасада при условии, что их размеры соответствуют указаниям, относящимся к токоотводам, а их толщина составляет не менее 0,5 мм.

Металлическая арматура железобетонных строений считается обеспечивающей электрическую непрерывность, если она удовлетворяет следующим условиям:

примерно 50 % соединений вертикальных и горизонтальных стержней выполнены сваркой или имеют жесткую связь (болтовое крепление, вязка проволокой);

электрическая непрерывность обеспечена между стальной арматурой различных заранее заготовленных бетонных блоков и арматурой бетонных блоков, подготовленных на месте.

3.2.3. Заземлители

3.2.3.1. Общие соображения

Во всех случаях, за исключением использования отдельно стоящего молниеотвода, заземлитель молниезащиты следует совместить с заземлителями электроустановок и средств связи. Если эти заземлители должны быть разделены по каким-либо технологическим соображениям, их следует объединить в общую систему с помощью системы уравнивания потенциалов.

3.2.3.2. Специально прокладываемые заземляющие электроды

Целесообразно использовать следующие типы заземлителей: один или несколько контуров, вертикальные (или наклонные) электроды, радиально расходящиеся электроды или заземляющий контур, уложенный на дне котлована, заземляющие сетки.

Заземлитель в виде наружного контура предпочтительно прокладывать на глубине не менее 0,5 м от поверхности земли и на расстоянии не менее 1 м от стен. Заземляющие электроды должны располагаться на глубине не менее 0,5 м за пределами защищаемого объекта и быть как можно более равномерно распределенными; при этом надо стремиться свести к минимуму их взаимное экранирование.

3.2.3.3. Естественные заземляющие электроды

В качестве заземляющих электродов может использоваться соединенная между собой арматура железобетона или иные подземные металлические конструкции, отвечающие требованиям п. 3.2.2.5. Если арматура железобетона используется как заземляющие электроды, повышенные требования предъявляются к местам ее соединений, чтобы исключить механическое разрушение бетона. Если используется преднапряженный бетон, следует учесть возможные последствия протекания тока молнии, который может вызвать недопустимые механические нагрузки.

3.3.2. Типовые зоны защиты стержневых и тросовых молниеотводов

3.3.2.1. Зоны защиты одиночного стержневого молниеотвода

Стандартной зоной защиты одиночного стержневого молниеотвода высотой h является круговой конус высотой h 0 h, вершина которого совпадает с вертикальной осью молниеотвода (рис. 3.1). Габариты зоны определяются двумя параметрами: высотой конуса h 0 и радиусом конуса на уровне земли r 0 .

Приведенные ниже расчетные формулы (табл. 3.4) пригодны для молниеотводов высотой до 150 м. При более высоких молниеотводах следует пользоваться специальной методикой расчета.

Рис. 3.1. Зона защиты одиночного стержневого молниеотвода

Для зоны защиты требуемой надежности (рис. 3.1) радиус горизонтального сечения r x на высоте h x определяется по формуле:

Расчет зоны защиты одиночного стержневого молниеотвода

Таблица 3.4

Надежность защиты Р з

Высота молниеотвода h , м

Высота конуса h 0 , м

Радиус конуса r 0 , м

От 100 до 150

h

От 30 до 100

h

От 100 до 150

h

От 30 до 100

h

h

От 100 до 150

h

h

3.3.2.2. Зоны защиты одиночного тросового молниеотвода

Стандартные зоны защиты одиночного тросового молниеотвода высотой h ограничены симметричными двускатными поверхностями, образующими в вертикальном сечении равнобедренный треугольник с вершиной на высоте h 0 h и основанием на уровне земли 2r 0 (рис. 3.2).

Приведенные ниже расчетные формулы (табл. 3.5) пригодны для молниеотводов высотой до 150 м. При большей высоте следует пользоваться специальным программным обеспечением. Здесь и далее под h понимается минимальная высота троса над уровнем земли (с учетом провеса).

Рис. 3.2. Зона защиты одиночного тросового молниеотвода:

L - расстояние между точками подвеса тросов

Полуширина r х зоны защиты требуемой надежности (рис. 3.2) на высоте h x от поверхности земли определяется выражением:

3.3.2.3. Зоны защиты двойного стержневого молниеотвода

Молниеотвод считается двойным, когда расстояние между стержневыми молниеприемниками L не превышает предельной величины L max . В противном случае оба молниеотвода рассматриваются как одиночные.

Конфигурация вертикальных и горизонтальных сечений стандартных зон защиты двойного стержневого молниеотвода (высотой h и расстоянием L между молниеотводами) представлена на рис. 3.3. Построение внешних областей зон двойного молниеотвода (полуконусов с габаритами h 0 , r 0) производится по формулам табл. 3.4 для одиночных стержневых молниеотводов. Размеры внутренних областей определяются параметрами h 0 и h c , первый из которых задает максимальную высоту зоны непосредственно у молниеотводов, а второй - минимальную высоту зоны посередине между молниеотводами. При расстоянии между молниеотводами L £ L c граница зоны не имеет провеса (h c = h 0). Для расстояний L c £ L ³ L max высота h c определяется по выражению

Входящие в него предельные расстояния L max и L c вычисляются по эмпирическим формулам табл. 3.6, пригодным для молниеотводов высотой до 150 м. При большей высоте молниеотводов следует пользоваться специальным программным обеспечением.

Размеры горизонтальных сечений зоны вычисляются по следующим формулам, общим для всех уровней надежности защиты:

максимальная полуширина зоны r х в горизонтальном сечении на высоте h x :

Расчет зоны защиты одиночного тросового молниеотвода

Таблица 3.5

Надежность защиты р з

Высота молниеотвода h , м

Высота конуса h 0 , м

Радиус конуса r 0 , м

От 30 до 100

h

От 100 до 150

h

От 30 до 100

h

h

От 100 до 150

h

h

L max , м

L 0 , м

От 30 до 100

h

От 100 до 150

От 30 до 100

h

h

От 100 до 150

От 30 до 100

h

h

От 100 до 150

4. ЗАЩИТА ОТ ВТОРИЧНЫХ ВОЗДЕЙСТВИЙ МОЛНИИ

4.2. Зоны защиты от воздействия молнии

Пространство, в котором расположены электрические и электронные системы, должно быть разделено на зоны различной степени защиты. Зоны характеризуются существенным изменением электромагнитных параметров на границах. В общем случае, чем выше номер зоны, тем меньше значения параметров электромагнитных полей, токов и напряжений в пространстве зоны.

Зона 0 - зона, где каждый объект подвержен прямому удару молнии, и поэтому через него может протекать полный ток молнии. В этой области электромагнитное поле имеет максимальное значение.

Зона 0 Е - зона, где объекты не подвержены прямому удару молнии, но электромагнитное поле не ослаблено и также имеет максимальное значение.

Зона 1 - зона, где объекты не подвержены прямому удару молнии, и ток во всех проводящих элементах внутри зоны меньше, чем в зоне 0 Е; в этой зоне электромагнитное поле может быть ослаблено экранированием.

Две пространственно разделенные зоны 1 с помощью экранированного соединения могут образовать общую зону (рис. 4.2).

Рис. 4.1. Зоны защиты от воздействия молнии:

1 - ЗОНА 0 (внешнее окружение); 2 - ЗОНА 1 (внутренняя электромагнитная обстановка);

3 - ЗОНА 2; 4 - ЗОНА 2 (обстановка внутри шкафа); 5 - ЗОНА 3

Рис. 4.2. Объединение двух зон

4.3. Экранирование

Экранирование является основным способом уменьшения электромагнитных помех.

Металлическая конструкция строительного сооружения используется или может быть использована в качестве экрана. Подобная экранная структура образуется, например, стальной арматурой крыши, стен, полов здания, а также металлическими деталями крыши, фасадов, стальными каркасами, решетками. Эта экранирующая структура образует электромагнитный экран с отверстиями (за счет окон, дверей, вентиляционных отверстий, шага сетки в арматуре, щелей в металлическом фасаде, отверстий для линий электроснабжения и т. п.). Для уменьшения влияния электромагнитных полей все металлические элементы объекта электрически объединяются и соединяются с системой молниезащиты (рис. 4.3).

Рис. 4.3. Объединение металлических элементов объекта для уменьшения влияния электромагнитных полей:

1 - сварка на пересечениях проводов; 2 - массивная непрерывная дверная рама; 3 - сварка на каждом стержне

Статическое электричество – совокупность явлений, связанных с образованием, сохранением и релаксацией электрических зарядов на поверхности и в объеме диэлектрических и полупроводниковых материалов и изделий. Заряды СтЭ образуются при деформации и дроблении твердых тел, при разбрызгивании и истечении жидкостей, при перемещении (трении) твердых тел, слоев сыпучих и жидких тел, при испарении, кристаллизации, при облучении, при химических реакциях.

Схема мер защиты:

1. Исключить образование статического электричества или снизить его до безопасного уровня:

Изготовление контактирующих частей из материалов с близкими величинами электросопротивления;

Нефтепродукты не допускается наливать свободно падающей струей, сливную трубу располагать у дна;

2. Автоматизация и механизация производственных процессов

3. Мероприятия, направленные на быструю безразрядную релаксацию зарядов:

Заземление металлического и электропроводного оборудования;

– покрытие пластиковых вставок электропроводящими материалами;

Увеличение относительной влажности до 65…70 %. (Эффективно, если материалы гидрофильны);

Ионизация воздуха в зоне образования зарядов;

4. Ограждение человека: антистатическая одежда и обувь, токопроводящие полы и площадки, заземленные токопроводящая обивка стульев и электропроводные браслеты;

5. Организационные мероприятия: обучение, инструктажи и т.д.

Атмосферное электричество имеет ту же природу, что и статическое. По экспериментальным данным, нижняя часть облаков чаще всего имеет отрицательный заряд, верхняя – положительный.

Первичное воздействие атмосферного электричества – прямой удар молнии (мощный поражающий фактор), механические разрушения зданий, сооружений, деревьев, пожары, взрывы, поражения людей.

Вторичные воздействия атмосферного электричества: электростатическая и электромагнитная индукция, занос высоких потенциалов.

Все объекты защиты от атмосферного электричества подразделяются на обычные и специальные:

Обычные объекты - жилые и административные строения, а также здания и сооружения, высотой не более 60 м, предназначенные для торговли, промышленного производства, сельского хозяйства.

Специальные объекты: объекты, представляющие опасность для непосредственного окружения, окружающей среды, строения высотой более 60 м, игровые площадки, временные сооружения, строящиеся объекты.

При строительстве и реконструкции для каждого класса объектов требуется определить необходимые уровни надежности защиты от прямых ударов молнии (ПУМ). Для специальных объектов допустимый уровень надежности защиты от ПУМ устанавливается 0,9-0,999 в зависимости от степени его общественной значимости и тяжести ожидаемых последствий. Для обычных объектов 0,8-0,98.

Комплекс средств молниезащиты зданий или сооружений включает в себя устройства защиты от прямых ударов молнии и устройства защиты от вторичных воздействий молнии. Внешняя МЗС может быть изолирована от сооружения (отдельно стоящие молниеотводы - стержневые или тросовые) или может быть установлена на защищаемом сооружении и даже быть его частью. Внутренние устройства молниезащиты предназначены для ограничения электромагнитных воздействий тока молнии и предотвращения искрений внутри защищаемого объекта.