Домой / Продавец квартиры / Ионизирующие излучения взаимодействие радиации на организм человека. Последствия воздействия ионизирующих излучений на организм человека при внешнем и внутреннем облучении, загрязнении поверхности радиоактивными веществами

Ионизирующие излучения взаимодействие радиации на организм человека. Последствия воздействия ионизирующих излучений на организм человека при внешнем и внутреннем облучении, загрязнении поверхности радиоактивными веществами

Ионизирующим называется излучение, которое, проходя через среду, вызывает ионизацию или возбуждение молекул среды. Ионизирующее излучение, так же как и электромагнитное, не воспринимается органами чувств человека. Поэтому оно особенно опасно, так как человек не знает, что он подвергается его воздействию. Ионизирующее излучение иначе называют радиацией.

Радиация — это поток частиц (альфа-частиц, бета-частиц, нейтронов) или электромагнитной энергии очень высоких частот (гамма- или рентгеновские лучи).

Загрязнение производственной среды веществами, являющимися источниками ионизирующего излучения, называется радиоактивным загрязнением.

Радиоактивное загрязнение — это форма физического (энергетического) загрязнения, связанного с превышением естественного уровня содержания радиоактивных веществ в среде в результате деятельности человека.

Вещества состоят из мельчайших частиц химических элементов — атомов. Атом делим и имеет сложное строение. В центре атома химического элемента находится материальная частица, называемая атомным ядром, вокруг которой вращаются электроны. Большинство атомов химических элементов обладают большой устойчивостью, т. е. стабильностью. Однако у ряда известных в природе элементов ядра самопроизвольно распадаются. Такие элементы называются радионуклидами. Один и тот же элемент может иметь несколько радионуклидов. В этом случае их называют радиоизотопами химического элемента. Самопроизвольный распад радионуклидов сопровождается радиоактивным излучением.

Самопроизвольный распад ядер некоторых химических элементов (радионуклидов) называется радиоактивностью.

Радиоактивное излучение бывает различного вида: потоки частиц с высокой энергией, электромагнитная волна с частотой более 1,5 .10 17 Гц.

Испускаемые частицы бывают различных видов, но чаще всего испускаются альфа-частицы (α-излучение) и бета-частицы (β-излучение). Альфа-частица тяжелая и обладает высокой энергией, это ядро атома гелия. Бета-частица примерно в 7336 раз легче альфа-частицы, но может обладать также высокой энергией. Бета-излучение — это потоки электронов или позитронов.

Радиоактивное электромагнитное излучение (его также называют фотонным излучением) в зависимости от частоты волны бывает рентгеновским (1,5 . 10 17 ...5 . 10 19 Гц) и гамма-излучением (более 5 . 10 19 Гц). Естественное излучение бывает только гамма-излучением. Рентгеновское излучение искусственное и возникает в электронно-лучевых трубках при напряжениях в десятки и сотни тысяч вольт.

Радионуклиды, испуская частицы, превращаются в другие радионуклиды и химические элементы. Радионуклиды распадаются с различной скоростью. Скорость распада радионуклидов называют активностью . Единицей измерения активности является количество распадов в единицу времени. Один распад в секунду носит специальное название беккерель (Бк). Часто для измерения активности используется другая единица — кюри (Ku), 1 Ku = 37 .10 9 Бк. Одним из первых подробно изученных радионуклидов был радий-226. Его изучили впервые супруги Кюри, в честь которых и названа единица измерения активности. Количество распадов в секунду, происходящих в 1 г радия-226 (активность) равна 1 Ku.

Время, в течение которого распадается половина радионуклида, называется периодом полураспада (Т 1/2). Каждый радионуклид имеет свой период полураспада. Диапазон изменения Т 1/2 для различных радионуклидов очень широк. Он изменяется от секунд до миллиардов лет. Например, наиболее известный естественный радионуклид уран-238 имеет период полураспада около 4,5 миллиардов лет.

При распаде уменьшается количество радионуклида и уменьшается его активность. Закономерность, по которой снижается активность, подчиняется закону радиоактивного распада:

где А 0 — начальная активность, А — активность через период времени t .

Виды ионизирующих излучений

Ионизирующие излучения возникают при работе приборов, в основе действия которых лежат радиоактивные изотопы, при работе электровакуумных приборов, дисплеев и т.д.

К ионизирующим излучениям относятся корпускулярные (альфа-, бета-, нейтронные) и электромагнитные (гамма-, рентгеновское) излучения, способные при взаимодействии с веществом создавать заряженные атомы и молекулы-ионы.

Альфа-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде ядер или при ядерных реакциях.

Чем больше энергия частиц, тем больше полная ионизация, вызванная ею в веществе. Пробег альфа-частиц, испускаемых радиоактивным веществом, достигает 8-9 см в воздухе, а в живой ткани — нескольких десятков микрон. Обладая сравнительно большой массой, альфа-частицы быстро теряют свою энергию при взаимодействии с веществом, что обусловливает их низкую проникающую способность и высокую удельную ионизацию, составляющую в воздухе на 1 см пути несколько десятков тысяч пар ионов.

Бета-излучение - поток электронов или позитронов, возникающих при радиоактивном распаде.

Максимальный пробег в воздухе бета-частиц — 1800 см, а в живых тканях — 2,5 см. Ионизирующая способность бета-частиц ниже (нескольких десятков пар на 1 см пробега), а проникающая способность выше, чем альфа-частиц.

Нейтроны, поток которых образует нейтронное излучение, преобразуют свою энергию в упругих и неупругих взаимодействиях с ядрами атомов.

При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма- квантов (гамма-излучение): при упругих взаимодействиях возможна обычная ионизация вещества.

Проникающая способность нейтронов в значительной степени зависит от их энергии и состава вещества атомов, с которыми они взаимодействуют.

Гамма-излучение - электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или взаимодействии частиц.

Гамма-излучение обладает большой проникающей способностью и малым ионизирующим действием.

Рентгеновское излучение возникает в среде, окружающей источник бета-излучения (в рентгеновских трубках, ускорителях электронов) и представляет собой совокупность тормозного и характеристического излучения. Тормозное излучение — фотонное излучение с непрерывным спектром, испускаемое при изменении кинетической энергии заряженных частиц; характеристическое излучение — это фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атомов.

Как и гамма-излучение, рентгеновское излучение обладает малой ионизирующей способностью и большой глубиной проникновения.

Источники ионизирующего излучения

Вид радиационного поражения человека зависит от характера источников ионизирующих излучений.

Естественный фон излучения состоит из космического излучения и излучения естественно-распределенных радиоактивных веществ.

Кроме естественного облучения человек подвержен облучению и из других источников, например: при производстве рентгеновских снимков черепа — 0,8-6 Р; позвоночника — 1,6-14,7 Р; легких (флюорография) — 0,2-0,5 Р: грудной клетки при рентгеноскопии — 4,7- 19,5 Р; желудочно-кишечного тракта при рентгеноскопии — 12-82 Р: зубов — 3-5 Р.

Однократное облучение в 25-50 бэр приводит к незначительным скоропроходяшим изменениям в крови, при дозах облучения 80-120 бэр появляются признаки лучевой болезни, но без летального исхода. Острая лучевая болезнь развивается при однократном облучении 200-300 бэр, при этом летальный исход возможен в 50% случаев. Летальный исход в 100% случаев наступает при дозах 550- 700 бэр. В настоящее время существует ряд противолучевых препаратов. ослабляющих действие излучения.

Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, которые вызывают острую форму. Наиболее характерными признаками хронической формы лучевой болезни являются изменения в крови, нарушения со стороны нервной системы, локальные поражения кожи, повреждения хрусталика глаза, снижение иммунитета.

Степень зависит от того, является облучение внешним или внутренним. Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм человека через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Например, накапливающиеся в организме изотопы йода могут вызывать поражения щитовидной железы, редкоземельные элементы — опухоли печени, изотопы цезия, рубидия — опухоли мягких тканей.

Искусственные источники радиации

Кроме облучения от естественных источников радиации, которые были и есть всегда и везде, в XX веке появились и дополнительные источники излучения, связанные с деятельностью человека.

Прежде всего — это использование рентгеновского излучения и гамма-излучения в медицине при диагностике и лечении больных. , получаемые при соответствующих процедурах, могут быть очень большими, особенно при лечении злокачественных опухолей лучевой терапией, когда непосредственно в зоне опухоли они могут достигать 1000 бэр и более. При рентгенологических обследованиях доза зависит от времени обследования и органа, который диагностируется, и может изменяться в широких пределах — от нескольких бэр при снимке зуба до десятков бэр — при обследовании желудочно-кишечного тракта и легких. Флюрографические снимки дают минимальную дозу, и отказываться от профилактических ежегодных флюорографических обследований ни в коем случае не следует. Средняя доза, получаемая людьми от медицинских исследований, составляет 0,15 бэр в год.

Во второй половине XX века люди стали активно использовать радиацию в мирных целях. Различные радиоизотопы используют в научных исследованиях, при диагностике технических объектов, в контрольно-измерительной аппаратуре и т. д. И наконец — ядерная энергетика. Ядерные энергетические установки используют на атомных электрических станциях (АЭС), ледоколах, кораблях, подводных лодках. В настоящее время только на атомных электрических станциях работают свыше 400 ядерных реакторов общей электрической мощностью свыше 300 млн кВт. Для получения и переработки ядерного горючего создан целый комплекс предприятий, объединенных в ядерно-топливный цикл (ЯТЦ).

ЯТЦ включает предприятия по добыче урана (урановые рудники), его обогащению (обогатительные фабрики), изготовлению топливных элементов, сами АЭС, предприятия вторичной переработки отработанного ядерного горючего (радиохимические заводы), по временному хранению и переработке образующихся радиоактивных отходов ЯТЦ и, наконец, пункты вечного захоронения радиоактивных отходов (могильники). На всех этапах ЯТЦ радиоактивные вещества в большей или меньшей степени воздействуют на обслуживающий персонал, на всех этапах могут происходить выбросы (нормальные или аварийные) радионуклидов в окружающую среду и создавать дополнительную дозу на население, особенно проживающее в районе предприятий ЯТЦ.

Откуда появляются радионуклиды при нормальной работе АЭС? Радиация внутри ядерного реактора огромна. Осколки деления топлива, различные элементарные частицы могут проникать через защитные оболочки, микротрещины и попадать в теплоноситель и воздух. Целый ряд технологических операций при производстве электрической энергии на АЭС могут приводить к загрязнению воды и воздуха. Поэтому атомные станции снабжены системой водо- и газоочистки. Выбросы в атмосферу осуществляются через высокую трубу.

При нормальной работе АЭС выбросы в окружающую среду малы и оказывают небольшое воздействие на проживающее по близости население.

Наибольшую опасность с точки зрения радиационной безопасности представляют заводы по переработки отработанного ядерного горючего, которое обладает очень высокой активностью. На этих предприятиях образуется большое количество жидких отходов с высокой радиоактивностью, существует опасность развития самопроизвольной цепной реакции (ядерная опасность).

Очень сложна проблема борьбы с радиоактивными отходами, которые являются весьма значимыми источниками радиоактивного загрязнения биосферы.

Однако сложные и дорогостоящие от радиации на предприятиях ЯТЦ дают возможность обеспечить защиту человека и окружающей среды до очень малых величин, существенно меньших существующего техногенного фона. Другая ситуация имеет место при отклонении от нормального режима работы, а особенно при авариях. Так, произошедшая в 1986 г. авария (которую можно отнести к катастрофам глобального масштаба — самая крупная авария на предприятиях ЯТЦ за всю историю развития ядерной энергетики) на Чернобыльской АЭС привела к выбросу в окружающую среду лишь 5 % всего топлива. В результате в окружающую среду было выброшено радионуклидов с общей активностью 50 млн Ки. Этот выброс привел к облучению большого количества людей, большому количеству смертей, загрязнению очень больших территорий, необходимости массового переселения людей.

Авария на Чернобыльской АЭС ясно показала, что ядерный способ получения энергии возможен лишь в случае принципиального исключения аварий крупного масштаба на предприятиях ЯТЦ.

Ионизирующее излучение -- это электромагнитное излучение, которое создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы различных знаков.

Взаимодействие с веществом заряженных частиц, гамма-квантов и рентгеновских лучей. Корпускулярные частицы ядерного происхождения (-части, -частицы, нейтроны, протоны и т.д.), а также фотонное излучение (-кванты и рентгеновское и тормозное излучение) обладают значительной кинетической энергией. Взаимодействуя с веществом, они теряют эту энергию в основном в результате упругих взаимодействий с ядрами атомов или электронами (как это происходит при взаимодействии бильярдных шаров), отдавая им всю или часть своей энергии на возбуждение атомов (т.е. перевод электрона с более близкой на более удаленную от ядра орбиту), а также на ио-низацию атомов или молекул среды (т.е. отрыв одного или более электронов от атомов)

Упругое взаимодействие характерно для нейтральных частиц тронов) и фотонов, не имеющих заряда. При этом нейтрон, взаимодействуя с атомами, может в соответствии с законами классической механики передавать часть энергии, пропорциональную массам соударяющихся частиц. Если это тяжелый атом, то передается только часть энергии. Если это атом водорода, равный массе нейтрона, то передается вся энергия. При этом нейтрон замедляется до тепловых энергий порядка долей электровольта и далее вступает в ядерные реакции. Ударяя в атом, нейтрон может передать ему такое количество энергии, которое достаточно, чтобы ядро «выскочило» из электронной оболочки. В этом случае образуется заряженная частица, обладающая значительной скоростью, которая способна осуществлять ионизацию среды.

Аналогично взаимодействие с веществом и фотона. Он самостоятельно не способен ионизировать среду, но выбивает электроны из атома, которые и производят ионизацию среды. Нейтроны и фотонное излучение относятся к косвенно ионизирующим излучениям.

Заряженные частицы (- и -частицы), протоны и другие способны ионизировать среду за счет взаимодействия с электрическим полем атома и электрическим полем ядра. При этом заряженные частицы тормозятся и отклоняются от направления своего движения, испуская при этом тормозное излучение, одно из разновидностей фотонного излучения.

Заряженные частицы могут за счет неупругих взаимодействий передавать атомам среды количество энергии, недостаточное для ионизации. В этом случае образуются атомы в возбужденном состоянии, которые передают эту энергию другим атомам, либо испускают кванты характеристического излучения, либо, соударяясь с другими возбужденными атомами, могут получить энергию, достаточную для ионизации атомов.

Как правило, при взаимодействии излучений с веществами происходят все три вида последствий этого взаимодействия: упругое соударение, возбуждение и ионизация. На примере взаимодействия электронов с веществом в табл. 3.15 показана относительная доля и энергия, теряемая ими на различные процессы взаимодействия.

Таблица 3.15

Относительная доля энергии, теряемая электронами в результате различных процессов взаимодействия, %

Энергия, эВ

Упругое взаимодействие

Возбуждение атомов

Ионизация

Процесс ионизации является наиболее важным эффектом, на котором построены почти все методы дозиметрии ядерных излучений, особенно косвенно ионизирующих излучений.

В процессе ионизации образуются две заряженные частицы: положительный ион (или атом, потерявший электрон с внешней оболочки) и свободный электрон. При каждом акте взаимодействия могут быть оторваны один или несколько электронов.

Истинная работа ионизации атома составляет 10... 17 эВ, т.е. столько энергии требуется для отрыва электрона от атома. Экспериментально установлено, что энергия, передаваемая на образование одной пары ионов в воздухе, в среднем 35 эВ для -частиц и 34 эВ для электронов, а для вещества биологической ткани примерно 33 эВ. Разница определяется следующим. Среднюю энергию, идущую на образование одной пары ионов, определяют экспериментально как отношение энергии первичной частицы к среднему числу пар ионов, образованной одной частицей на всем ее пути. Так как заряженные частицы тратят свою энергию на процессы возбуждения и ионизации, то в экспериментальную величину энергии ионизации входят все виды энергетических потерь, отнесенные к образованию одной пары ионов. Экспериментальным подтверждением сказанному является табл. 3.14.

Дозы излучения. Когда ионизирующее излучение проходит через вещество, то на него оказывает воздействие только та часть энергии излучения, которая передается веществу, поглощается им. Порция энергии, переданная излучением веществу, называется дозой.

Количественной характеристикой взаимодействия ионизирующего излучения с веществом является поглощенная доза. Поглощенная доза Д (Дж/кг) -- это отношение средней энергии Не, переданной ионизирующим излучением веществу в элементарном объеме, к единице массы dm вещества в этом объеме

В системе СИ в качестве единицы поглощенной дозы принят грей (Гр), названной в честь английского физика и радиобиолога Л. Грея. 1 Гр соответствует поглощению в среднем 1 Дж энергии ионизирующего излучения в массе вещества, равной 1 кг. 1 Гр = 1 Джкг -1 .

Доза эквивалентная Н -- поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного излучения, W R

где D T,R -- средняя поглощенная доза в органе или ткани Т, W R - взвешивающий коэффициент для излучения R. Если поле излучения состоит из нескольких излучений с различными величинами W R , эквивалентная доза определяется в виде:

Единицей измерения эквивалентной дозы является Джкг. -1 , имеющий специальное название зиверт (Зв).

Доза эффективная Е -- величина, используемая как мера возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органе на соответствующий коэффициент для данного органа или ткани:

где -- эквивалентная доза в ткани Т за время, a W T -- взвешивающий коэффициент для ткани Т. Единица измерения эффективной дозы -- Джкг -1 , которая имеет специальное название -- зиверт (Зв).

Доза эффективная коллективная S -- величина, определяющая полное воздействие излучения на группу людей, определяется в виде:

где -- средняя эффективная доза i-й подгруппы группы людей, -- число людей в подгруппе.

Единица измерения эффективной коллективной дозы -- человеко-зиверт (чел-Зв).

Механизм биологического действия ионизирующих излучений. Биологическое действие радиации на живой организм начинается на клеточном уровне. Живой организм состоит из клеток. Клетка животного состоит из клеточной оболочки, окружающей студенистую массу -- цитоплазму, в которой заключено более плотное ядро. Цитоплазма состоит из органических соединений белкового характера, образующих пространственную решетку, ячейки которой заполняют вода, растворенные в ней соли и относительно малые молекулы липидов -- веществ, по свойствам подобным жирам. Ядро считается наиболее чувствительной жизненно важной частью клетки, а основными его структурными элементами являются хромосомы. В основе строения хромосом находится молекула диоксирибонуклеиновой кислоты (ДНК), в которой заключена наследственная информация организма. Отдельные участки ДНК, ответственные за формирование определенного элементарного признака, называются генами или «кирпичиками наследственности». Гены расположены в хромосомах в строго определенном порядке и каждому организму соответствует определенный набор хромосом в каждой клетке. У человека каждая клетка содержит 23 пары хромосом. При делении клетки (митозе) хромосомы удваиваются и в определенном порядке располагаются в дочерних клетках.

Ионизирующее излучение вызывает поломку хромосом (хромосомные аберрации), за которыми происходит соединение разорванных концов в новые сочетания. Это и приводит к изменению генного аппарата и образованию дочерних клеток, неодинаковых с исходными. Если стойкие хромосомные аберрации происходят в половых клетках, то это ведет к мутациям, т.е. появлению у облученных особей потомства с другими признаками. Мутации полезны, если они приводят к повышению жизнестойкости организма, и вредны, если проявляются в виде различных врожденных пороков. Практика показывает, что при действии ионизирующих излучений вероятность возникновения полезных мутаций мала.

Однако в любой клетке обнаружены непрерывно действующие процессы исправления химических повреждений в молекулах ДНК. Оказалось также, что ДНК достаточна устойчива по отношению к разрывам, вызываемым радиацией. Необходимо произвести семь разрушений структуры ДНК, чтобы она уже не могла восстановиться, т.е. только в этом случае происходит мутация. При меньшем числе разрывов ДНК восстанавливается в прежнем виде. Это указывает на высокую прочность генов по отношению к внешним воздействиям, в том числе и ионизирующим излучениям.

Разрушение жизненно важных для организма молекул возможно не только при прямом их разрушении ионизирующим излучением (теория мишени), но и при косвенном действии, когда сама молекула не поглощает непосредственно энергию излучения, а получает ее от другого молекулы (растворителя), которая первоначально поглотила эту энергию. В этом случае радиационный эффект обусловлен вторичным влиянием продуктов радиолиза (разложения) растворителя на молекулы ДНК. Этот механизм объясняется теорией радикалов. Повторяющиеся прямые попадания ионизирующих частиц в молекулу ДНК особенно в ее чувствительные участки -- гены, могут вызвать ее распад. Однако вероятность таких попаданий меньше, чем попаданий в молекулы воды, которая служит основным растворителем в клетке. Поэтому радиолиз воды, т.е. распад при действии радиации на водородный (Н и гидроксильный (ОН) радикалы с последующим образованием молекулярного водорода и перекиси водорода, имеет первостепенное значение в радиобиологических процессах. Наличие в системе кислорода усиливает эти процессы. На основании теории радикалов главную рол в развитии биологических изменений играют ионы и радикалы, которые образуются в воде вдоль траектории движения ионизирующих частиц.

Высокая способность радикалов вступать в химические реакции обусловливает процессы их взаимодействия с биологически важными молекулами, находящимися в непосредственной близи от них. В таких реакциях разрушаются структуры биологических веществ, а это в свою очередь приводит к изменениям биологических процессов, включая процессы образования новых клеток.

Последствия облучения людей ионизирующим излучением. Когда мутация возникает в клетке, то о распространяется на все клетки нового организма, образовавшие путем деления. Помимо генетических эффектов, которые могут сказываться на последующих поколениях (врожденные уродства), наблюдаются и так называемые соматические (телесные) эффекты, которые опасны не только для самого данного организма (соматическая мутация), но и его потомства. Соматическая мутация распространяется только на определенный круг клеток, образовавшихся путем обычного деления из первичной клетки, претерпевшей мутацию.

Соматические повреждения организма ионизирующим излучением являются результатом воздействия излучения на большой комплекс -- коллективы клеток, образующих определенные ткани или органы. Радиация тормозит или даже полностью останавливает процесс деления клеток, в котором собственно и проявляется их жизнь, а достаточно сильное излучение в конце концов убивает клетки. Разрушительное действие излучения особенно заметно проявляется в молодых тканях. Это обстоятельство используется, в частности, для защиты организма от злокачественных (например, раковых опухолей) новообразований, которые разрушаются под воздействием ионизирующих излучений значительно быстрее доброкачественных клеток. К соматическим эффектам относят локальное повреждение кожи (лучевой ожог), катаракту глаз (помутнение хрусталика), повреждение половых органов (кратковременная или постоянная стерилизация) и др.

В отличие от соматических, генетические эффекты действия радиации обнаружить трудно, так как они действуют на малое число клеток и имеют длительный скрытый период, измеряемый десятками лет после облучения. Такая опасность существует даже при очень слабом облучении, которое хотя и не разрушает клетки, но способно вызвать мутации хромосом и изменить наследственные свойства. Большинство подобных мутаций проявляется только в том случае, когда зародыш получает от обоих родителей хромосомы, поврежденные одинаковым образом. Результаты мутаций, в том числе и смертность от наследственных эффектов -- так называемая генетическая смерть, наблюдались задолго до того, как люди начали строить ядерные реакторы и применять ядерное оружие. Мутации могут быть вызваны космическими лучами, а также естественным радиационным фоном Земли, на долю которого по оценкам специалистов приходится 1 % мутаций человека.

Установлено, что не существует минимального уровня радиации, ниже которого мутации не происходит. Общее количество мутаций, вызванных ионизирующим излучением, пропорционально численности населения и средней дозе облучения. Проявление генетических эффектов мало зависит от мощности дозы, а определяется суммарной накопленной дозой независимо от того, получена она за 1 сутки или 50 лет. Полагают, что генетические эффекты не имеют дозового порога. Генетические эффекты определяются только эффективной коллективной дозой человекозиверт (чел-Зв), а выявление эффекта у отдельного индивидуума практически не предсказуемо.

В отличие от генетических эффектов, которые вызываются малыми Дозами радиации, соматические эффекты всегда начинаются с определенной пороговой дозы: при меньших дозах повреждения организма не происходит. Другое отличие соматических повреждений от генетических заключается в том, что организм способен со временем преодолевать последствия облучения, тогда как клеточные повреждения необратимы.

Значения некоторых доз и эффектов воздействия излучения на организм приведены в табл. 3.16.

Таблица 3.16

Радиационное воздействие и соответствующие биологические эффекты

Воздействие

Мощность дозы или продолжительность

Облучение

Биологический эффект

В течение недели

Практически отсутствует

Ежедневно (в течение нескольких лет)

Лейкемия

Единовременно

Хромосомные нарушения в опухолевых клетках (культура соответствующих тканей)

В течение недели

Практически отсутствует

Накопление малых доз

Удвоение мутагенных эффектов у одного поколения

Единовременно

СД 50 для людей

Выпадение волос (обратимое)

0,1-0,5 Зв/сут

Возможно излечение в стационарных условиях

3 Зв/сут или накопление малых доз

Радиационная катаракта

Возникновение рака сильно радиочувствительных органов

Возникновение рака умеренно радиочувствительных органов

Дозовый предел для нервных тканей

Дозовый предел для желудочно-кишечного тракта

Примечание. О -- общее облучение тела; Л -- локальное облучение; СД 50 -- доза, приводящая к 50 %-ной смертности среди лиц, подвергшихся облучению.

Нормирование воздействия ионизирующих излучений. К основным правовым нормативам в области радиационной безопасности относятся Нормы радиационной безопасности (НРБ--99). Документ относится к категории санитарных правил (СП 2.6.1.758-99), утвержден Государственным санитарным врачом Российской Федерации 2 июля 1999 г.

Нормы радиационной безопасности включают в себя термины и определения, которые необходимо использовать в решении проблем радиационной безопасности. Они также устанавливают три класса нормативов: основные дозовые пределы; допустимые уровни, являющиеся производными от дозовых пределов; пределы годового поступления, объемные допустимые среднегодовые поступления, удельные активности, допустимые уровни загрязнения рабочих поверхностей и т.д.; контрольные уровни.

Нормирование ионизирующих излучений определяется характером воздействия ионизирующей радиации на организм человека. При этом выделяются два вида эффектов, относящихся в медицинской практике к болезням: детерминированные пороговые эффекты (лучевая болезнь, лучевой ожог, лучевая катаракта, аномалии развития плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни).

Обеспечение радиационной безопасности определяется следующими основными принципами:

  • 1. Принципом нормирования -- непревышение допустимых пределов индиви-дуальных доз облучения граждан от всех источников ионизирующего излучения.
  • 2. Принципом обоснования -- запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучения.
  • 3. Принципом оптимизации -- поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения.

В целях социально-экономической оценки воздействия ионизирующего излучения на людей для расчета вероятностей потерь и обоснования расходов на радиационную защиту при реализации принципа оптимизации НРБ-- 99 вводят, что облучение в коллективной эффективной дозе в 1 чел-Зв приводят к потере 1 чел-года жизни населения.

НРБ -- 99 вводят понятия индивидуальный и коллективный риск, а также определяют значение максимальной величины уровня принебрегаемого риска воздействия облучения. Согласно этим нормам индивидуальный и коллективный пожизненный риск возникновения стохастических (вероятностных) эффектов определяется соответственно

где r, R -- индивидуальный и коллективный пожизненный риск соответственно; Е - индивидуальная эффективная доза; -- вероятность для i-го индивидуума получить годовую эффективную дозу от Е до Е + dE; r E -- коэффициент пожизненного ри-ска сокращения длительности периода полноценной жизни в среднем на 15 лет один стохастический эффект (от смертельного рака, серьезных наследственных эффектов и несмертельного рака, приведенного по вреду к последствиям от смертельного рака), равный

для производственного облучения:

1/чел.-Зв при мЗв/год

1/чел.-Зв при мЗв/год

для облучения населения:

1/чел.-Зв при мЗв/год;

1/чел.-Зв при мЗв/год

Для целей радиационной безопасности при облучении в течение года индивидуальный риск сокращения длительности периода полноценной жизни в результате возникновения тяжелых последствий от детерминированных эффектов консервативно принимается равным:

где -- вероятность для i-го индивидуума быть облученным с дозой больше Д при обращении с источником в течение года; Д -- пороговая доза для детерминированного эффекта.

Потенциальное облучение коллектива из N индивидуумов оправдано, если

где -- среднее сокращение длительности периода полноценной жизни в результате возникновения стохастических эффектов, равное 15 лет; -- среднее сокращение длительности периода полноценной жизни в результате возникновения тяжелых последствий от детерминированных эффектов, равное 45 лет; -- денежный эквивалент потери 1 чел.-года жизни населения; V-- доход от производства; Р -- затраты на основное производство, кроме ущерба от защиты; Y -- ущерб от защиты.

НРБ--99 подчеркивают, что снижение риска до возможного низкого уровня (оптимизацию) следует осуществлять с учетом двух обстоятельств:

  • - предел риска регламентирует потенциальное облучение от всех возможных источников. Поэтому для каждого источника при оптимизации устанавливается граница риска;
  • - при снижении риска потенциального облучения существует минимальный уровень риска, ниже которого риск считается пренебрежимым и дальнейшее снижение риска нецелесообразно.

Предел индивидуального риска для техногенного облучения лиц из персонала принимается 1,010 -3 за 1 год, а для населения 5,010 -5 за 1 год.

Уровень пренебрежимого риска разделяет область оптимизации риска и область безусловно приемлемого риска и составляет 10 -6 за 1 год.

НРБ--99 вводят следующие категории облучаемых лиц:

  • - персонал и лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
  • - все население, включая лиц из персонала, вне сферы и условий их производственной деятельности.

Таблица 3.17

Основные дозовые пределы

Примечания. * Дозы облучения, как и все остальные допустимые производные уровни персонала группы Б, не должны превышать 1/4 значений для персонала группы А.

** Относится к среднему значению в слое толщиной 5 мг/см 2 под покровным слоем толщиной 5 мг/см2. На ладонях толщина покровного слоя -- 40 мг/см 2 .

Основные дозовые пределы облучаемых лиц из персонала и населения не включают в себя дозы от природных, медицинских источников ионизирующего излучения и дозу вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.

НРБ--99 предусматривают, что при одновременном воздействии источников внешнего и внутреннего облучения должно выполняться условие, чтобы отношение дозы внешнего облучения к пределу дозы и отношение годовых поступлений нуклидов к их пределам в сумме не превышали 1.

Для женщин из персонала в возрасте до 45 лет эквивалентная доза в коже на поверхности нижней части живота не должна превышать 1 мЗв в месяц, а поступление радионуклидов в организм не должно превышать за год 1/20 предела годового поступления для персонала. При этом эквивалентная доза облучения плода за 2 месяца не выявленной беременности не превышает 1 мЗв.

При установлении беременности женщин из персонала работодатели должны переводить их на другую работу, не связанную с излучением.

Для студентов в возрасте до 21 года, проходящих облучение с источниками ионизирующего излучения, годовые накопленные дозы не должны превышать значений, установленных для лиц из населения.

При проведении профилактических медицинских рентгенологических научных исследований практически здоровых лиц, годовая эффективная доза облучения не должна превышать 1 мЗв.

НРБ--99 устанавливают также требования по ограничению облучения населения в условиях радиационной аварии.

Ионизирующее излучение - это любое излучение, вызывающее ионизацию среды, т.е. протекание электрических токов в этой среде, в том числе и в организме человека, что часто приводит к разрушению клеток, изменению состава крови, ожогам и другим тяжелым последствиям.

Источники ионизирующих излучений

Источниками ионизирующих излученийявляются радиоактивные элементы и их изотопы , ядерные реакторы , ускорители заряженных частиц и др. Рентгеновские установки и высоковольтные источники постоянного тока относятся к источникам рентгеновского излучения . Здесь следует отметить, что при нормальном режиме их эксплуатации радиационная опасность незначительна. Она наступает при возникновении аварийного режима и может долго проявлять себя при радиоактивном заражении местности.

Существенную часть облучения население получает от естественных источников радиации: из космоса и от радиоактивных веществ, находящихся в земной коре. Наиболее весомым из этой группы является радиоактивный газ радон, залегающий практически во всех грунтах и постоянно выделяющийся на поверхность, а главное, проникающий в производственные и жилые помещения. Он почти не проявляет себя, так как не имеет запаха и бесцветен, что затрудняет его обнаружение.

Ионизирующие излучения разделяются на два вида: электромагнитное (гамма-излучение и рентгеновское излучение) и корпускулярное, представляющее собой a- и β-частицы, нейтроны и др.

Виды ионизирующих излучений

Ионизирующими называют излучения, взаимодействие которых со средой приводит к образованию ионов различных знаков. Источники этих излучений широко используются в атомной энергетике, технике, химии, медицине, сельском хозяйстве и т. п. Работа с радиоактивными веществами и источниками ионизирующих излучений представляет потенциальную угрозу здоровью и жизни людей, которые участвуют в их использовании.

К ионизирующим относятся два вида излучений:

1) корпускулярное (α- и β-излучения, нейтронное излучение);

2) электромагнитное (γ-излучение и рентгеновское).

Альфа-излучение - это поток ядер атомов гелия, испускаемых веществом при радиоактивном распаде вещества или при ядерных реакциях. Значительная масса α-частиц ограничивает их скорость и увеличивает число столкновений в веществе, поэтому α-частицы обладают высокой ионизирующей способностью и малой проникающей способностью. Пробег α-частиц в воздухе достигает 8÷9 см, а в живой ткани - несколько десятков микрометров. Это излучение не представляет опасности до тех пор, пока радиоактивные вещества, испускающие a- частицы, не попадут внутрь организма через рану, с пищей или вдыхаемым воздухом; тогда они становятся чрезвычайно опасными.


Бета -излучение - это поток электронов или позитронов, возникающих при радиоактивном распаде ядер. По сравнению с α-частицами β-частицы обладают значительно меньшей массой и меньшим зарядом, поэтому у β-частиц выше проникающая способность, чем у α-частиц, а ионизирующая способность ниже. Пробег β-частиц в воздухе составляет 18 м, в живой ткани - 2,5 см.

Нейтронное излучение - это поток ядерных частиц, не имеющих заряда, вылетающих из ядер атомов при некоторых ядерных реакциях, в частности при делении ядер урана и плутония. В зависимости от энергии различают медленные нейтроны (с энергией менее 1 кЭВ), нейтроны промежуточных энергий (от 1 до 500 кЭВ) и быстрые нейтроны (от 500 кэВ до 20 МэВ). При неупругом взаимодействии нейтронов с ядрами атомов среды возникает вторичное излучение, состоящее как из заряженных частиц, так и из γ-квантов. Проникающая способность нейтронов зависит от их энергии, но она существенно выше, чем у α-частиц или β-частиц. Для быстрых нейтронов длина пробега в воздухе составляет до 120 м, а в биологической ткани - 10 см.

Гамма-излучение представляет собой электромагнитное излучение, испускаемое при ядерных превращениях или взаимодействии частиц (10 20 ÷10 22 Гц). Гамма-излучение обладает малым ионизирующим действием, но большой проникающей способностью и распространяется со скоростью света. Оно свободно проходит через тело человека и другие материалы. Это излучение может задержать лишь толстая свинцовая или бетонная плита.

Рентгеновское излучение также представляет собой электромагнитное излучение, возникающее при торможении быстрых электронов в веществе (10 17 ÷10 20 Гц).

Понятие о нуклидах и радионуклидах

Ядра всех изотопов химических элементов образуют группу «нуклидов». Большинство нуклидов нестабильны, т.е. они все время превращаются в другие нуклиды. Например, атом урана-238 время от времени испускает два протона и два нейтрона (a-частицы). Уран превращается в торий-234, но торий также нестабилен. В конечном итоге эта цепочка превращений оканчивается стабильным нуклидом свинца.

Самопроизвольный распад нестабильного нуклида называется радиоактивным распадом, а сам такой нуклид - радионуклидом.

При каждом распаде высвобождается энергия, которая и передается дальше в виде излучения. Поэтому можно сказать, что в определенной степени испускание ядром частицы, состоящей из двух протонов и двух нейтронов, - это a-излучение, испускание электрона - β-излучение, и, в некоторых случаях, возникает g-излучение.

Образование и рассеивание радионуклидов приводит к радиоактивному заражению воздуха, почвы, воды, что требует постоянного контроля их содержания и принятия мер по нейтрализации.

  • 12. Работоспособность человека и ее динамика
  • 13. Надежность работы человека-оператора. Критерии оценки
  • 14.Анализаторы и органы чувств человека.Строение анализатора.Виды анализаторов.
  • 15. Характеристика анализаторов человека.
  • 16.Строение и характеристики зрительного анализатора.
  • 17.Строение и характеристики слухового анализатора
  • 18.Строение и характеристики тактильного, обонятельного и вкусового анализатора.
  • 19. Основные психофизические законы восприятия
  • 20.Энергетические затраты человека при различных видах деятельности. Методы оценки тяжести труда.
  • 21. Параметры микроклимата производственных помещений.
  • 22. Нормирование параметров микроклимата.
  • 23. Инфракрасное излучение. Воздействие на организм человека. Нормирование. Защита
  • 24. Вентиляция производственных помещений.
  • 25.Кондиционирование воздуха
  • 26. Потребный воздухообмен в производственных помещениях. Методы расчета.
  • 27. Вредные вещества, их классификации. Виды комбинированного действия вредных веществ.
  • 28. Нормирование содержания вредных веществ в воздухе.
  • 29. Производственное освещение. Основные характеристики. Требования к системе освещения.
  • 31. Методы расчета искусственного освещения. Контроль производственного освещения.
  • 32.Понятие шума. Характеристика шума как физического явления.
  • 33. Громкость звука. Кривые равной громкости.
  • 34. Воздействие шума на организм человека
  • 35.Классификации шума
  • 2 Классификация по характеру спектра и временным характеристикам
  • 36.Гигиеническое нормирование шума
  • 37. Методы и средства защиты от шума
  • 40.Вибрация.Классификация вибрации по способу создания, по способу передачи человеку, по характеру спектра.
  • 41.Вибрация. Классификация вибрации по месту возникновения, по частотному составу, по временным хар-м
  • 3) По временным характеристикам:
  • 42. Характеристики вибрации. Действие вибрации на организм человека
  • 43.Методы нормир-я вибрации и нормируемые параметры.
  • 44.Методы и средства защиты от вибрации
  • 46. Зоны эл.Магнитного излучения. Возд-ие эмп на чел-ка.
  • 49. Методы и средства зашиты от неионизирующих электромагнитных излучений.
  • 50 Особенности воздействия лазерного излучения на организм человека. Нормирование. Зашита.
  • 51. Ионизирующие излучения. Виды ионизирующих излучений, основные характеристики.
  • 52. Ионизирующие излучения. Дозы ионизирующих излучений и единицы их измерения.
  • 55. Виды воздействия эл. Тока на человека. Факторы, влияющие на исход поражения человека эл. Током.
  • 56. Основные схемы линий электропередач. Схемы прикосновения человека к линиям эл/передач.
  • 57. Пороговые значения постоянного и переменного эл. Тока. Виды эл/травм.
  • 58. Напряжение прикосновения. Напряжение шага. 1 помощь пострадавшим от воздействия эл. Тока.
  • 59. Защитное заземление, виды защитного заземления.
  • 60. Зануление, защитное отключение и др. Средства защиты в эл/установках.
  • 62. Пожаробезопасность. Опасные факторы пожара.
  • 63.Виды горения.Виды процесса возникновения.
  • 64.Характеристики пожароопасности веществ
  • 65. Классификация веществ и материалов по пожарной опасности. Классификация производств и зон по пожароопасности
  • 66. Классификация электрооборудования по пожаровзрывоопасности и пожарной опасности.
  • 67. Пожарная профилактика в производственных зданиях
  • 68. Методы и средства тушения пожаров
  • 69.Нпа по охране труда
  • 70. Обязанности работодателя в области охраны труда на предприятии
  • 72.Расследование нс на производстве
  • 73.Управление охраной окружающей среды(оос)
  • 74.Эколог-е нормирование.Виды экологических нормативов
  • 75 Экологическое лицензирование
  • 76. Инженерная защита окружающей среды. Основные процессы, лежащие в основе средозащитных технологий
  • 77. Методы и основные аппараты для очистки от пылевоздушных примесей
  • 78.Методы и основные аппараты для очистки газовоздушных примесей
  • 1. Абсорбсер
  • 2.Адсорбер
  • 3.Хемосорбция
  • 4.Аппарат термической нейтрализации
  • 79. Методы и основные аппараты очистки сточных вод.
  • 80. Отходы и их виды. Методы переработки и утилизации отходов.
  • 81. Чрезвычайные ситуации: основные определения и классификация
  • 82. Чс природного, техногенного и экологического характера
  • 83. Причины возникновения и стадии развития чс
  • 84. Поражающие факторы техногенных катастроф: понятие, классификация.
  • 85. Поражающие факторы физического действия и их параметры. «Эффект домино»
  • 86.Прогнозирование химической обстановки при авариях на хоо
  • 87. Цели, задачи и структура рсчс
  • 88. Устойчивость функционирования промышленных объектов и систем
  • 89. Мероприятия по ликвидации последствий чс
  • 90. Оценка риска технических систем. Концепция «удельной смертности»
  • 51. Ионизирующие излучения. Виды ионизирующих излучений, основные характеристики.

    ИИ делятся на 2 вида:

      Корпускулярное излучение

    - 𝛼-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде или при ядерных реакциях;

    - 𝛽-излучение – поток электронов или позитронов, возникающих при радиоактивном распаде;

    Нейтронное излучение (При упругих взаимодействиях происходит обычная ионизация вещества. При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и -квантов).

    2. Электромагнитное излучение

    - 𝛾-излучение – это электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или взаимодействии частиц;

    Рентгеновское излучение – возникает в среде, окружающей источ-ник -излучения, в рентгеновских трубках.

    Характеристики ИИ: энергия (МэВ); скорость (км/с); пробег (в воздухе, в живой ткани); ионизирующая способность (пар ионов на 1 см пути в воздухе).

    Самая низкая ионизирующая способность у α-излучения.

    Заряженные частицы приводят к прямой, сильной ионизации.

    Активность (А) радиоактивного в-ва – число спонтанных ядерных превращений (dN) в этом веществе за малый промежуток времени (dt):

    1 Бк (беккерель) равен одному ядерному превращению в секунду.

    52. Ионизирующие излучения. Дозы ионизирующих излучений и единицы их измерения.

    Ионизирующее излучение (ИИ) – это излучение, взаимодействие которой со средой приводит к образованию зарядов противоположных знаков. Возникает ионизирующее излучение при радиоактивном распаде, ядерных превращениях, а также при взаимодействии заряженных частиц, нейтронов, фотонного (электромагнитного) излучения с веществом.

    Доза излучения – величина, используемая для оценки воздействия ионизирующего излучения.

    Экспозиционная доза (характеризует источник излучения по эффекту ионизации):

    Экспозиционная доза на рабочем месте при работе с радиоактивными веществами:

    где А–активность источника [мКи], К–гамма-постоянная изотопа [Рсм2/(чмКи)], t – время облучения, r – расстояние от источника до рабочего места [см ].

    Мощность дозы (интенсивность облучения) – приращение соответствующей дозы под воздействием данного излучения за ед. времени.

    Мощность экспозиционной дозы [рч -1 ].

    Поглощённая доза показывает, какое кол-во энергии ИИ поглощено ед. массы облучаемого в-ва:

    Д погл. = Д эксп. К 1

    где К 1 – коэффициент, учитывающий вид облучаемого вещества

    Поглащ. доза, Грей, [Дж/кг]=1Грей

    Эквивалентная доза хар-ет хроническое облучение излучением произвольного состава

    Н = Д Q [Зв] 1 Зв = 100 бэр.

    Q – безразмерный взвешивающий коэффициент для данного вида излучения. Для рентгеновского и -излучения Q=1, для альфа-, бета-частиц и нейтронов Q=20.

    Эффективная эквивалентная доза хар-ет чувствительность разл. органов и тканей излучению.

    Облучение неживых объектов – Поглащ. доза

    Облучение живых объектов – Эквив. доза

    53. Действие ионизирующих излучений (ИИ) на организм. Внешнее и внутреннее облучение.

    Биологический эффект ИИ основан на ионизации живой ткани, что приводит к разрыву молекулярных связей и изменению химической структуры различных соединений, что приводит к изменению ДНК клеток и их последующей гибели.

    Нарушение процессов жизнедеятельности организма выражается в таких расстройствах как

    Торможение функций кроветворных органов,

    Нарушение нормальной свертываемости крови и повышение хрупкос- ти кровеносных сосудов,

    Расстройство деятельности желудочно-кишечного тракта,

    Снижение сопротивляемости инфекциям,

    Истощение организма.

    Внешнее облучение происходит тогда, когда источник радиации нах-ся вне организма человека и отсутствуют пути их попадания внутрь.

    Внутреннее облучение происх. тогда, когда источник ИИ нах-ся внутри человека; при этом внутр. облучение также опасно близостью источника ИИ к органам и тканям.

    Пороговые эффекты (Н > 0,1 Зв/год) зависят от дозы ИИ, возникают при дозах облучения в течении всей жизни

    Лучевая болезнь – это заболевание, которое хар-ся симптомами, возникающими при воздействии ИИ, такими, как снижение кроветворной способности, расстройство желудочно-кишечного тракта, снижение иммунитета.

    Степень лучевой болезни зависит от дозы излучения. Самой тяжелой явл-ся 4-ая степень, которая возникает при воздействии ИИ дозой более 10 Грей. Хронические лучевые поражения, как правило, вызываются внутренним облучением.

    Беспороговые (стахастические) эффекты проявляются при дозах Н<0,1 Зв/год, вероятность возникновения которых не зависит от дозы излучения.

    К стахастическим эф-там относят:

    Изменения соматические

    Изменения иммунные

    Изменения генетические

    Принцип нормирования – т.е. непревышение допустимых пределов индивид. Доз облучения от всех ист-ков ИИ.

    Принцип обоснования – т.е. запрещение всех видов деятельности по исп-ю ист-ков ИИ, при которых полученная для человека и общества польза не превышает риск возможного вреда, причинённого дополнительно к естественному радиац. факту.

    Принцип оптимизации – поддержание на возможно низком и достижимом уровне с учетом экономич. и соц. факторов индивид. доз облуч-я и числа облучаемых лиц при использовании источника ИИ.

    СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности».

    В соответствии с данным документом выделяют 3 гр. лиц:

    гр.А – это лица, непоср. работающие с техногенными источниками ИИ

    гр – это лица, усл-ия работы кот нах-ся в непоср. бризости от ист-ка ИИ, но деят. данных лиц непоср. с ист-ком не связано.

    гр – это всё остальное население, вкл. лиц гр. А и Б вне их производственной деятельности.

    Основной дозовый предел уст. по эффективной дозе:

    Для лиц гр.А: 20мЗв в год в ср. за последоват. 5 лет, но не более 50мЗв в год.

    Для лиц гр.Б: 1мЗв в год в ср. за последоват. 5 лет, но не более 5мЗв в год.

    Для лиц гр.В: не должны превышать ¼ значений для персонала гр.А.

    На случай ЧС, вызванной радиац.аварией сущ-ет т.н. пиковое повышенное облучение, кот. разрешается только в тех случаях, когда нет возм-ти принять меры исключающие вред организму.

    Применение таких доз м.б. оправдано только спасением жизни людей и предотвращением аварий, доп-ся только для мужчин старше 30 лет при добровольном письменном соглашении.

    М/ды защиты от ИИ:

    Защита кол-вом

    Защита временем

    Защита расст-ем

    Зонирование

    Дистанционное управление

    Экранирование

    Для защиты от γ -излучения: металлич. экраны, выполненные с большим атомным весом (W,Fe), а также из бетона, чугуна.

    Для защиты от β-излучения: исп-ют материалы с малой атомной массой (алюминий, плексиглаз).

    Для защиты от α-излучений: исп-ют металлы, содержащие Н2 (вода, парафин, и т.д.)

    Толщина экрана К=Ро/Рдоп, Ро – мощн. дозы, измеренная на рад. месте; Рдоп – предельно допустимая доза.

    Зонирование – деление территории на 3 зоны: 1) укрытие; 2) объекты и помещения, в которых могут нах-ся люди; 3) зона пост. пребывания людей.

    Дозиметрический контроль основывается на исп-ии след. методов: 1.Ионизационный 2.Фонографический 3.Химический 4.Калориметрический 5.Сцинтиляционный.

    Основные приборы , исп-ые для дозиметрич. контроля:

      Рентгенометр (для измер-я мощн. эксп. дозы)

      Радиометр (для измерения плотности потоков ИИ)

      Индивид. дозиметры (для измер-я экспозиц. или поглощённой дозы).

    Основную часть ионизирующего облучения человек получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения попадают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре.

    Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении
    . Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним .

    Радиация по самой своей природе вредна для жизни. Малые дозы облучения могут «запустить» не до конца еще изученную цепь событий, приводящих к раку или генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.

    Повреждения, вызываемые большими дозами облучения, обыкновенно проявляются в течение нескольких часов или дней. Раковые заболевания, однако, проявляются спустя много лет после облучения, - как правило, не ранее чем через одно-два десятилетия. А врожденные пороки развития и другие наследственные болезни, вызываемые повреждением генетического аппарата, по определению проявляются лишь в следующем или последующих поколениях: это дети, внуки и более отдаленные потомки индивидуума, подвергшегося облучению.

    В то время как идентификация быстро проявляющихся («острых») последствий от действия больших доз облучения не составляет труда, обнаружить отдаленные последствия от малых доз облучения почти всегда оказывается очень трудно. Частично это объясняется тем, что для их проявления должно пройти очень много времени. Но даже и обнаружив какие-то эффекты, требуется еще и доказать, что они объясняются действием радиации, поскольку и рак, и повреждения генетического аппарата могут быть вызваны не только радиацией, но и множеством других причин.

    Чтобы вызвать острое поражение организма, дозы облучения должны превышать определенный уровень, но нет никаких оснований считать, что это правило действует в случае таких последствий, как рак или повреждение генетического аппарата. По крайней мере, теоретически для этого достаточно самой малой дозы. Однако, в то же время, никакая доза облучения не приводит к этим последствиям во всех случаях. Даже при относительно больших дозах облучения далеко не все люди обречены на эти болезни: действующие в организме человека репарационные механизмы обычно ликвидируют все повреждения. Точно так же любой человек, подвергшийся действию радиации, совсем не обязательно должен заболеть раком или стать носителем наследственных болезней; однако вероятность или риск наступления таких последствий у него больше, чем у человека, который не был облучен. И риск этот тем больше, чем больше доза облучения.

    Острое поражение организма человека происходит при больших дозах облучения. Вообще говоря, радиация оказывает подобное действие, лишь начиная с некоторой минимальной, или «пороговой», дозы облучения.

    Реакция тканей и органов человека на облучение неодинакова, причем различия очень велики. Величина же дозы, определяющая тяжесть поражения организма, зависит от того, получает ли ее организм сразу или в несколько приемов. Большинство органов успевает в той или иной степени залечить радиационные повреждения и поэтому лучше переносит серию мелких доз, нежели ту же суммарную дозу облучения, полученную за один прием.

    Воздействие ионизирующего излучения на живые клетки

    Заряженные частицы . Проникающие в ткани организма a- и b-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. (g-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые в конечном счете также приводят к электрическим взаимодействиям.)

    Электрические взаимодействия . За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.

    Физико-химические изменения . И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционноспособные, как «свободные радикалы».

    Химические изменения . В течение следующих миллионных долей секунды, образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки.

    Биологические эффекты . Биохимические изменения могут произойти как через несколько секунд, так и чрез десятилетия после облучения и явиться причиной немедленной гибели клеток или таких изменений в них, которые могут привести к раку.

    Разумеется, если доза облучения достаточно велика, облученный человек погибнет. Во всяком случае, очень большие дозы облучения порядка 100 Гр вызывают настолько серьезное поражение центральной нервной системы, что смерть, как правило, наступает в течение нескольких часов или дней. При дозах облучения от 10 до 50 Гр при облучении всего тела поражение центральной нервной системы может оказаться не настолько серьезным, чтобы привести к летальному исходу, однако облученный человек, скорее всего, все равно умрет через одну-две недели от кровоизлияний в желудочно-кишечном тракте. При еще меньших дозах может не произойти серьезных повреждений желудочного тракта или организм с ними справится, и тем не менее, смерть может наступить через один-два месяца, с момента облучения главным образом из-за разрушения клеток красного костного мозга - главного компонента кроветворной системы организма: от дозы 3-5 Гр при облучении всего тела умирает примерно половина всех облученных. Таким образом, в этом диапазоне доз облучения большие дозы отличаются от меньших лишь тем, что смерть в первом случае наступает раньше, а во втором - позже.

    В организме человека ионизирующие воздействия вызывают цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являются процессы ионизации и возбуждения атомов и молекул в тканях. Важную роль в формировании биологических эффектов играют свободные радикалы Н и ОН, которые образуются в результате радиолиза воды (в организме человека содержится до 70 % воды). Обладая высокой активностью, они вступают в химические реакции с молекулами белка, ферментов и других элементов биологической ткани, что приводит к нарушению биохимических процессов в организме. В процесс вовлекаются сотни и тысячи молекул, не затронутых излучением. В результате нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму. Это приводит к нарушению жизнедеятельности отдельных функций органов и систем организма. Под влиянием ионизирующих излучений в организме происходит нарушение функции кроветворных органов, увеличение проницаемости и хрупкости сосудов, расстройство желудочно-кишечного тракта, снижение сопротивляемости организма, его истощение, перерождение нормальных клеток в злокачественные и др. Эффекты развиваются в течение разных промежутков времени: от долей секунд до многих часов, дней, лет.

    Радиационные эффекты принято делить на соматические и генетические. Соматические эффекты проявляются в форме острой и хронической лучевой болезни, локальных лучевых повреждений, например, ожогов, а также в виде отдаленных реакций организма, таких как лейкоз, злокачественные опухоли, раннее старение организма. Генетические эффекты могут проявиться в последующих поколениях.

    Острые поражения развиваются при однократном равномерном гамма-облучении всего тела и поглощенной дозе свыше 0,25 Гр. При дозе 0,25…0,5 Гр могут наблюдаться временные изменения в крови, которые быстро нормализуются. В интервале дозы 0,5… 1,5 Гр возникает чувство усталости, менее чем у 10 % облученных может наблюдаться рвота, умеренные изменения в крови. При дозе 1,5…2,0 Гр наблюдается легкая форма острой лучевой болезни, которая проявляется продолжительным снижением числа лимфоцитов в крови (лимфопенией), возможна рвота в первые сутки после облучения. Смертельные исходы не регистрируются.

    Лучевая болезнь средней тяжести возникает при дозе 2,5…4,0 Гр. Почти у всех в первые сутки - тошнота, рвота, резко снижается содержание лейкоцитов в крови, появляются подкожные кровоизлияния, в 20 % случаев возможен смертельный исход, смерть наступает через 2…6 недель после облучения.

    При дозе 4,0…6,0 Гр развивается тяжелая форма лучевой болезни, приводящая в 50 % случаев к смерти в течение первого месяца. При дозах, превышающих 6,0…9,0 Гр, почти в 100 % случаев крайне тяжелая форма лучевой болезни заканчивается смертью из-за кровоизлияния или инфекционных заболеваний-.

    Приведенные данные относятся к случаям, когда отсутствует лечение. В настоящее время имеется ряд противолучевых средств, которые при комплексном лечении позволяют исключить летальный исход при дозах около 10 Гр.

    Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, которые вызывают острую форму. Наиболее характерными признаками хронической формы являются изменения в крови, нарушения со стороны нервной системы, локальные поражения кожи, повреждения хрусталика, снижение иммунитета организма.

    Степень воздействия радиации зависит от того, является облучение внешним или внутренним (при попадании радиоактивного изотопа внутрь организма). Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм человека через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Например, кальций, радий, стронций накапливаются в костях, изотопы иода вызывают повреждение щитовидной железы, редкоземельные элементы - преимущественно опухоли печени. Равномерно распределяются изотопы цезия, рубидия, вызывая угнетение кроветворения, повреждение семенников, опухоли мягких тканей. При внутреннем облучении наиболее опасны альфа-излучающие изотопы полония и плутония.

    Гигиеническая регламентация ионизирующего излучения осуществляется Нормами радиационной безопасности НРБ-99 (Санитарными правилами СП 2.6.1.758-99).

    Основные дозовые пределы облучения и допустимые уровни устанавливаются для следующих категорий облучаемых лиц:

    Персонал - лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);

    Все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

    Для категорий облучаемых лиц устанавливают три класса нормативов: основные пределы доз, (табл. 1) и допустимые уровни, соответствующие основным пределам доз и контрольные уровни.

    Доза эквивалентная Н- поглощенная доза в органе или ткани D, умноженная на соответствующий взвешивающий коэффициент для данного излучения W:

    H =W*D

    Единицей измерения эквивалентной дозы является Дж/кг, имеющий специальное наименование зиверт (Зв).

    Таблица 1

    Основные пределы доз (извлечение из НРБ-99)

    Нормируемые величины

    Пределы доз, мЗв

    Персонал

    (группа А)*

    Население

    Эффективная доза

    20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год

    1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год

    Эквивалентная доза за год в:

    хрусталике глаза ***

    коже****

    Кистях и стопах

    * Допускается одновременное облучение до указанных пределов по всем нормируемым величинам.

    ** Основные пределы доз, как и все остальные допустимые уровни облучения персонала группы Б, равны 1/4 значений для персонала группы А. Далее в тексте все нормативные значения для категории персонал приводятся только для группы А.

    *** Относится к дозе на глубине 300 мг/см 2 .

    **** Относится к среднему по площади в 1 см 2 значению в базальном слое кожи толщиной 5 мг/см 2 под покровным слоем толщиной 5 мг/см 2 . На ладонях толщина покровного слоя 40 мг/см. Указанным пределом допускается облучение всей кожи человека при условии, что в пределах усредненного облучения любого 1 см площади кожи этот предел не будет превышен. Предел дозы при облучении кожи лица обеспечивает непревышение предела дозы на хрусталик от бета-частиц.

    Значения для фотонов, электронов и ионов любых энергий составляет 1, для а - частиц, осколков деления, тяжелых ядер - 20.

    Доза эффективная - величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органе (ткани) на соответствующий взвешивающий коэффициент для данного органа или ткани:

    Основные пределы доз облучения не включают в себя дозы от природных и медицинских источников ионизирующего излучения, а также дозу вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.

    Таблица 2

    Допустимые уровни общего радиоактивного загрязенния рабочих поверхностей кожи (в течение рабочей смены) (извлечение из НРБ-96), спецодежды и средств индивидуальной защиты, частиц /(см 2 *мин)

    Объект загрязнения

    b -Активные нуклилы

    b -Активные

    нуклиды

    Отдельные

    прочие

    Неповрежденная кожа, полотенца, спецбелье, внутренняя поверхность лицевых частей средств индивидуальной защиты

    2

    2

    200

    Основная спецодежда, внутренняя поверхность дополнительных средств индивидуальной защиты, наружная поверхность спецобуви

    5

    20

    2000

    Наружная поверхность дополнительных средств индивидуальной зашиты, снимаемой в саншлюзах

    50

    200

    10000

    Поверхности помещений постоянного пребывания персонала и находящегося в них оборудования

    5

    20

    2000

    Поверхности помещений периодического пребывания персонала и находящегося в них оборудования

    50

    200

    10000

    Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) - 1000 мЗв, а для населения за период жизни (70 лет) - 70 мЗв. Кроме этого задаются допустимые уровни общего радиоактивного загрязнения рабочих поверхностей, кожи (в течение рабочей смены), спецодежды и средств индивидуальной защиты. В табл. 2 приведены числовые значения допустимых уровней общего радиоактивного загрязнения.

    2. Обеспечение безопасности при работе с ионизирующими излучениями

    Все работы с радионуклидами правила подразделяют на два вида: на работу с закрытыми источниками ионизирующих излучений и работу с открытыми радиоактивными источниками.

    Закрытыми источниками ионизирующих излучений называются любые источники, устройство которых исключает попадание радиоактивных веществ в воздух рабочей зоны. Открытые источники ионизирующих излучений способны загрязнять воздух рабочей зоны. Поэтому отдельно разработаны требования к безопасной работе с закрытыми и открытыми источниками ионизирующих излучений на производстве.

    Обеспечение радиационной безопасности требует комплекса многообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, а также от типа источника.

    Главной опасностью закрытых источников ионизирующих излучений является внешнее облучение, определяемое видом излучения, активностью источника, плотностью потока излучения и создаваемой им дозой облучения и поглощенной дозой. Защитные мероприятия, позволяющие обеспечить условия радиационной безопасности при применении закрытых источников, основаны на знании законов распространения ионизирующих излучений и характера их взаимодействия с веществом. Главные из них следующие:

    1. Доза внешнего облучения пропорциональна интенсивности излучения времени действия.

    2. Интенсивность излучения от точечного источника пропорциональна количеству квантов или частиц, возникающих в них в единицу времени, и обратно пропорционально квадрату расстояния.

    3. Интенсивность излучения может быть уменьшена с помощью экранов.

    Из этих закономерностей вытекают основные принципы обеспечения радиационной безопасности: уменьшение мощности источников до минимальных величин (защита количеством); сокращение времени работы с источниками (зашита временем); увеличение расстояния от источника до работающих (защита расстоянием) и экранирование источников излучения материалами, поглощающими ионизирующие излучения (зашита экранами).

    Защита количеством подразумевает проведение работы с минимальными количествами радиоактивных веществ, т.е. пропорционально сокращает мощность излучения. Однако требования технологического процесса часто не позволяют сократить, количество радиоактивного вещества в источнике, что ограничивает на практике применение этого метода зашиты.

    Защита временем основана на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала. Этот принцип особенно часто применяется при непосредственной работе персонала с малыми активностями.

    Защита расстоянием -достаточно простой и надежный способ защиты. Это связано со способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в конечном итоге приводит к снижению дозы облучения персонала.

    Защита экранами наиболее эффективный способ защиты от излучений. В зависимости от вида ионизирующих излучений для изготовления экранов Применяют различные материалы, а их толщина определяется мощностью излучения. Лучшими экранами для защиты от рентгеновского и гамма-излучений являются материалы с большим 2, например свинец, позволяющий добиться нужного эффекта по кратности ослабления при наименьшей толщине экрана. Более дешевые экраны делаются из просвинцованного стекла, железа, бетона, барритобетона, железобетона и воды.

    По своему назначению защитные экраны условно разделяются на пять групп:

    1. Защитные экраны-контейнеры, в которые помещаются радиоактивные препараты. Они широко используются при транспортировке радиоактивных веществ и источников излучений.

    2. Защитные Экраны для оборудования. В этом случае экранами полностью окружают все рабочее оборудование при положении радиоактивного препарата в рабочем положении или при включении высокого (или ускоряющего) напряжения на источнике ионизирующей радиации.

    3. Передвижные защитные экраны. Этот тип защитных экранов применяется для защиты рабочего места на различных участках рабочей зоны.

    4; Защитные экраны, монтируемые как части строительных конструкций (стены, перекрытия полов и потолков, специальные двери и т.д.). Такой вид защитных экранов предназначается для зашиты помещений, в которых постоянно находится персонал, и прилегающей территории.

    5. Экраны индивидуальных средств защиты (щиток из оргстекла, смотровые стекла пневмокостюмов, просвинцованные перчатки и др.).

    Зашита от открытых источников ионизирующих излучений предусматривает как защиту от внешнего облучения, так и защиту персонала от внутреннего облучения, связанного с возможным проникновением радиоактивных веществ в организм через органы дыхания, пищеварения или через кожу. Все виды работ с открытыми источниками ионизирующих излучений разделены на 3 класса. Чем выше класс выполняемых работ, тем жестче гигиенические требования по защите персонала от внутреннего переоблучения.

    Способы защиты персонала при этом следующие:

    1. Использование принципов защиты, применяемых при работе с источниками излучения в закрытом виде.

    2. Герметизация производственного оборудования с целью изоляции процессов, которые могут явиться источниками поступления радиоактивных веществ во внешнюю среду.

    3. Мероприятия планировочного характера. Планировка помещений предполагает максимальную изоляцию работ с радиоактивными веществами от других помещений и участков, имеющих иное функциональное назначение. Помещения для работ I класса должны размешаться в отдельных зданиях или изолированной части здания, имеющей отдельный вход. Помещения для работ II класса должны размещаться изолированно от других помещений; работы III класса могут проводиться в отдельных специально выделенных комнатах.

    4. Применение санитарно-гигиенических устройств и оборудования, использование специальных защитных материалов.

    5. Использование средств индивидуальной защиты персонала. Все средства индивидуальной защиты, используемые для работы с открытыми источниками, разделяются на пять видов: спецодежда, спецобувь, средства защиты органов дыхания, изолирующие костюмы, дополнительные защитные приспособления.

    6. Выполнение правил личной гигиены. Эти правила предусматривают личностные требования к работающим с источниками ионизирующих излучений: запрещение курения в рабочей; зоне, тщательная очистка (дезактивация) кожных покровов после окончания работы, проведение дозиметрического контроля загрязнения спецодежды, спецобуви и кожных покровов. Все эти меры предполагают исключение возможности проникновения радиоактивных веществ внутрь организма.

    Службы радиационной безопасности.
    Безопасность работы с источниками ионизирующих излучений на предприятиях контролируют специализированные службы-службы радиационной безопасности комплектуются из лиц, прошедших специальную подготовку в средних, высших учебных заведениях или специализированных курсах Минатома РФ. Эти службы оснащены необходимыми приборами и оборудованием, позволяющими решать поставленные перед ними задачи.

    Службы выполняют все виды контроля на основании действующих методик, которые постоянно совершенствуются по мере выпуска новых видов приборов радиационного контроля.

    Важной системой профилактических мероприятий при работе с источниками ионизирующих излучений является проведение радиационного контроля.

    Основные задачи, определяемые национальным законодательством по контролю радиационной обстановки в зависимости от характера проводимых работ, следующие:

    Контроль мощности дозы рентгеновского и гамма-излучений, потоков бета-частиц, нитронов, корпускулярных излучений на рабочих местах, смежных помещениях и на территории предприятия и наблюдаемой зоны;

    Контроле за содержанием радиоактивных газов и аэрозолей в воздухе рабочих и других помещений предприятия;

    Контроль индивидуального облучения в зависимости от характера работ: индивидуальный контроль внешнего облучения, контроль за содержанием радиоактивных веществ в организме или в отдельном критическом органе;

    Контроль за величиной выброса радиоактивных веществ в атмосферу;

    Контроль за содержанием радиоактивных веществ в сточных водах, сбрасываемых непосредственно в канализацию;

    Контроль за сбором, удалением и обезвреживанием радиоактивных твердых и жидких отходов;

    Контроль уровня загрязнения объектов внешней среды за пределами предприятия.