Домой / Вопросы и ответы / Источники зажигания их воспламеняющая способность. Открытый огонь, раскаленные продукты горения и нагретые ими поверхности. Профилактические мероприятия по предотвращению пожара

Источники зажигания их воспламеняющая способность. Открытый огонь, раскаленные продукты горения и нагретые ими поверхности. Профилактические мероприятия по предотвращению пожара

ТЕПЛОВЫЕ ИСТОЧНИКИ ЗАЖИГАНИЯ.

ВОСПЛАМЕНЕНИЕ ГОРЮЧИХ СМЕСЕЙ ОТ НАГРЕТЫХ ПОВЕРХНОСТЕЙ, ФРИКЦИОННЫХ ИСКР, РАЗРЯДОВ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА.

Тепловыми источниками зажигания горючих смесей могут быть открытый огонь, раскалённые продукты горения, нагретые поверхности, разряды статического электричества, молнии.

Источниками открытого огня в производственных условиях являются технологические нагревательные печи, реакторы огневого действия, регенераторы с выжиганием органических веществ из негорючих катализаторов, печи для сжигания и утилизации отходов; факельные устройства для сжигания отходящих газов, аппараты для газовой резки и сварки металлов.

Открытый огонь может воспламенить во всех случаях горючие смеси газов и паров с воздухом, так как температура пламени (бо­лее 1000 °С) всегда превышает температуру самовоспламенения газов и паров.

Основной мерой противопожарной защиты от стационарных источников открытого огня является их изоляция от горючих газов и паров при авариях и повреждениях. Поэтому аппараты огневого действия располагают на открытых площадках на определённом расстоянии от потенциальных объектов воспламенения. При газосварочных работах необходимы специальные меры, применение защитных экранов для предотвращения разлета раскаленных частичек металла и т. п.

Нагретые поверхности технологического оборудования

Правила техники безопасности предусматривают установление допустимой температуры поверхности такого оборудования.

Предельно допустимая температура безопасного нагрева неизолированных поверхностей технологического (электрического) оборудования составляет 80 % от величины стандартной температуры самовос­пламенения газов или паров жидкостей и не должна быть выше минимальной температуры самовоспламенения.

В технологических процессах с использованием горючих пылей и волокон температура поверхности оборудования, на которую могут осесть горючие пыли или волокна, должна быть не менее чем на 50°С ниже температуры тления пылей (для тлеющих пылей):

t пов. оборуд = t тления пыли – 50 о С

Для нетлеющих пылей:

t пов. оборуд 2/3 t самовоспл

Фрикционные искры (искры удара и трения).

Являются наиболее распространенными источниками зажигания горючих смесей во взрывоопасных производствах. Они образуются при трении или соударении рабочих органов технологических машин и механиз­мов, а также при выполнении обслуживающим персоналом неко­торых технологических операций. При обработке абразивные частицы могут ра­зогреваться до температуры видимого свечения. Такие частицы принято называть фрикционными искрами.

Фрикционные искры металлов в определенных условиях разог­реваются до температуры, при которой происходит воспламене­ние частиц. В этом случае за очень малый промежуток времени выделяется количество тепла, достаточное для прогревания при­легающего к частице объема горючей газовой смеси до температу­ры самовоспламенения.

При окислении металлических частиц кислородом воздуха на поверхности частиц образуются оксидные плёнки.

Все металлы можно разделить на две группы.

К первой группе относятся металлы Li , Na , Mg , К и др., у кото­рых отношение объемов оксида и металла меньше единицы.

Ко второй группе относятся F е, А l , Т i , С u и др., у которых от­ношение объемов оксида и металла больше единицы.

Основное влияние на скорость окисления таких частиц оказывает диффузия кислорода внутрь кристаллической решетки оксида.

Рассмотрим разогрев частиц металлов первой группы.

Частицы Mg размером 10 мкм разогреваются за счет реакции окисления до температуры 1381 К. Над поверхностью частицы появляется диффузионное пламя, которое существует до полного сгорания металла.

При трении и соударении частиц металлов второй группы, на­пример пары сталь - сталь, максимальная температура отрываю­щихся частиц определяется температурой плавления железа или его оксидов, что приводит к поверхностному горению до полного сгорания металла.

Растворённые в металлах и образующиеся при горении углерода газы раздувают пузырёк жидкого оксида, в результате чего после выгорания всего металла и охлаждения оксида образуется полый пузырёк.

Схема окисления фрикционных частиц стали приведена на рис. ниже.

Определяющее влияние на разогрев частиц оказывает содержа­ние кислорода в газовой среде. При увеличении содержания кислорода в 3 раза в смеси с азотом температура фрикционных частиц углеродистых сталей возрастает с 2100 К до 2600 К.

Схемы искрообразующих установок на производстве.

Исследования процессов искрообразования и поджигания горючих газовоздушных смесей проводят на экспериментальных установках, моделирующих реально существующие условия во взрывоопасных помещениях.

1 - установка копрового типа для испытания материалов;

2 - установка обстрела для ис­пытания материалов, работающих в режиме одиночного соударения при больших скорос­тях относительного перемещения;

3 - маятниковый копер для испытания материалов, ра­ботающих в режиме одиночных скользящих соударений;

4 - установка для испытания ма­териалов, работающих в режиме непрерывного трения;

5 - установка для испытания мате­риалов, работающих в режиме быстрочередующихся ударов.

Исследования процессов искрообразования и поджигания, го­рючих газопаровоздушных смесей проводятся на эксперименталь­ных установках, моделирующих реально существующие условия во взрывоопасных помещениях на рис. установка 5: мон­тируется во взрывной камере, продуваемой горючей смесью. Стол камеры служит для крепления пластин, изготовленных из иссле­дуемых материалов. Включается привод, и механизмом подъема закрепленная на столе пластина прижимается к вращающейся де­тали.

Скорость скольжения (V, м/с) определяется из уравнения:

где d - диаметр вращающегося элемента,

f - частота соударений, с -1 .

Число соударений n подсчитывается по формуле:

где S - количество «ударников» на вращающемся элементе;

τ - время работы ме­ханизма, с.

Вероятность Р воспламенения исследуемой горючей смеси при соударении различных материалов определяется как отношение количества поджиганий к количеству соударений n :

Испытываемые материалы считаются искробезопасными по отношению к данной горючей газовой смеси, если максимальное значение вероятности зажигания горючей смеси Р не превышает 10 -5 для любого состава горючей смеси.

В целях обеспечения фрикционной искробезопасности техно­логических процессов промышленность выпускает вентиляторы с применением защитных покрытий деталей проточной полости.

Во время проведения технологических операций и ремонтных работ во взрывоопасных зонах используется искробезопасный инстру­мент, выполненный из материалов, не дающих искр.

Наибольшее распространение получили искробезопасные бериллиевые бронзы. Ударные инструменты, выполненные из таких материалов не образуют искр, так как энергия соударения расходуется на пластическую деформацию материала инструмента.

Разряды статического электричества (СЭ)

Под СЭ принято понимать электрические заряды, находящиеся в состоянии относительного покоя, распределенные на поверхности или в объеме диэлектрика или на поверхности изолированного проводника.

Электризацией сопровождаются процессы, протекающие в аппаратах с интенсивным механическим воздействием: смесителях, дробилках, мельницах, пневмотранспортных системах и т. п.

Электризация отдельных частиц диспергированных материалов происходит при их соударении друг с другом и со стенками технологических аппаратов.

Основная опасность электризации - возможность воспламенения горючей смеси искровыми разрядами СЭ.

Токи электриза­ции, как правило, не превышают десятков микроампер. Они не могут вызвать поражение человека. Однако разряды СЭ между телом человека и заряженным объектом вызывают испуг, сопровож­дающийся непроизвольными некоординированными движениями, что может привести к несчастному случаю.

Искровой разряд СЭ воспламеняет горючую смесь, если выде­ляющаяся в разряде энергия равна или больше минимальной энергии зажигания горючей смеси.

Защита от СЭ должна осуществляться во взрывоопасных зонах, классификация которых приведена в Правилах устройства элект­роустановок (ПУЭ). Вне взрывоопасных зон защита осуществля­ется в случае, если СЭ отрицательно влияет на здоровье человека, технологический процесс или качество продукции.


Рис. 9. Классификация источников зажигания

Следует отметить, что приведенные классификации весьма условны. Рассмотрим некоторые виды источников зажигания более подробно:

Открытое пламя обычно имеет температуру 800 - 1000 К, а при горении отдельных видов горючих веществ достигает 3000 К. Так, например, температура пламени зависит от вида горючего вещества и условий горения и может меняться в широких пределах:

Открытое пламя во всех случаях приводит к воспламенению горючих газо-, паро- и пылевоздушных смесей, так как его минимальная температура 870-970 ºК, что всегда выше температуры самовоспламенения известных горючих веществ. Практически для воспламенения горючей смеси надо гораздо меньше теплоты, чем та, которую содержит любое пламя любого размера. Для воспламенения твердых веществ помимо высокой температуры требуется более длительное воздействие пламени. Так, например, термит, температура горения которого около 3300 К, за две секунды прожигает сосновую доску толщиной 15 мм насквозь, но не зажигает ее. В то же время пламя объемом всего один см 3 с температурой 1200 К при воздействии в течение 15-20 с воспламеняет ее.

Открытое пламя часто является источником большого количества лучистой энергии.

Топочные искры образуются при сжигании топлива. Искры возникают в результате различных причин, обусловленных несовершенством оборудования и организации самого процесса горения. Температура таких искр достаточно высокая - более 1000 К. Искры способны воспламенять только подготовленные к горению газопаровоздушные смеси, осевшую горючую пыль, пролитые жидкости и т.п.

Искры трения и соударения образуются при соударении или трении деталей машин и оборудования, инструментов, твердых предметов и т.п. При этом происходит механическое разрушение поверхности материала и отрыв различных по величине частичек разогретого вещества, чаще всего металла. Высокая начальная температура и скорость окисления этих частичек предопределяет их способность разогреваться во время полета. При соударении стальных деталей с содержанием углерода до 0,8 % максимальная начальная температура обрывающихся частиц не ниже 1600 К. Окисление металлических частичек, как и всякая реакция окисления, происходит с выделением теплоты. При оптимальных соотношениях температуры частицы, скорости движения и скорости образования на ее поверхности оксидной пленки может произойти воспламенение окружающей горючей среды. Большую роль при этом играет продолжительность соприкосновения такой искры с горючей смесью. Так, например, время существования искр от трения стали о наждачный камень не превышает в среднем одной секунды, а их температура - не выше 870- 970 К. Такие искры не могут воспламенить природный газ, у которого период индукции равен нескольким секундам при самовоспламенении. Если время жизни этих искр увеличить до трех секунд, то природный газ воспламенится.

До недавнего времени считалось, что истирание таких мягких металлов, как медь и алюминий, не может приводить к пожароопасному искрообразованию. Однако оказалось, что они в определенных условиях могут давать опасные искры. И наоборот, многие металлы и сплавы при истирании не дают пожароопасных искр с высокой энергией.

Способность металлов и сплавов к фрикционному искрообразованию обуславливается, в первую очередь, их химической природой, а не твердостью.

Особый характер имеет искрообразование при соударении и трении алюминиевых деталей со стальными поверхностями, покрытыми ржавчиной. В этом случае протекает термитная химическая реакция с выделением большого количества теплоты:

Fе 2 О 3 + FeO = Fе 3 O 4 – ржавчина

8А1 + 3Fе 3 O 4 ® 4Аl 2 O 3 + 9Fe + 3340 кДж

Разряды статического электричества возникают в результате электризации.Электризация - это разделение положительных и отрицательных зарядов. В настоящее время нет единой теории статического электричества, а существует ряд гипотез. Наиболее распространена гипотеза о контактной электризации жидких и твердых веществ. Электризация возникает при трении двух разнородных веществ, обладающих различными атомными и молекулярными силами притяжения на поверхности соприкосновения. По крайней мере одно из них должно быть диэлектриком. При этом происходит перераспределение электронов и ионов вещества, образующих двойной электрический слой с зарядами противоположных знаков.

Пары и газы электризуются только в том случае, если в них присутствуют твердые или жидкие примеси, либо продукты конденсации. Наэлектризованные тела несут заряды статического электричества и оказывают силовое воздействие друг на друга. В окружающем их пространстве образуется электрическое поле, воздействие которого обнаруживается при внесении в него заряженных или нейтральных тел. Основными его параметрами являютсянапряженность и потенциал отдельных точек. В ряде производств потенциал относительно земли достигает огромных значений. Например, при фильтрации бензина с асфальтом через шелк - 335 кВ. Токи составляют несколько микроампер.

Разряд статического электричества возникает тогда, когда напряженность электростатического поля над поверхностью диэлектрика или проводника достигает критического, пробивного напряжения. Для воздуха пробивное напряжение составляет 3×10 3 В/мм. Статическое электричество может вызвать воспламенение при следующих условиях;

Наличии источников статических зарядов;

Накоплении значительных зарядов на контактирующих поверхностях;

Достаточной разности потенциалов для электрического пробоя среды;

Возможности возникновения электрических разрядов.

Статическое электричество может накапливаться на человеке. Заряд может достигать 15 кВ, а энергия разряда - от 2,5 до 7,5 мДж.

Разряды атмосферного электричества - это электрические разряды в атмосфере между отрицательно заряженным облаком и землей. Молния имеет следующие параметры: сила тока - до 100 кА, напряжение - несколько миллионов вольт, температура - до 30 000 К. Действие молнии - тепловое, силовое и химическое. Длительность разряда – до 0,1 мс, энергия разряда - в среднем 100 МДж. Воздействие молнии обычно двоякое; прямой удар и вторичные проявления (электростатическая индукция). Прямой удар прожигает стальной лист толщиной до 4 мм. Вторичные проявления характеризуются возникновением на больших металлических массах (крыши домов, технологическое оборудование и т.п.) многочисленных искровых разрядов, индуцированных молнией. Энергия их может превышать 250 мДж.

Несмотря на многочисленность источников зажигания, все они по своей природе могут быть разделены на несколько основных видов. Зажигание такими из них, как топочные, фрикционные искры, частички расплавленного металла и т.п. носит тепловую природу и описывается теоретическими представлениями, рассмотренными выше. Электрические искры имеют свои отличительные особенности, поэтому их необходимо рассмотреть отдельно.

Источники зажигания, которые встречаются в условиях производства, очень разнообразные по причинам их возникновения, происхождения, а также по своим параметрам.

Чтобы обнаружить возможность появления в ГС источников зажигания и оценить, насколько предусмотренные мероприятия защиты предотвращают их появлене, необходимо рассмотреть все виды потенциальных источников зажигания.

Источники зажигания условно классифицируются:

    открытый огонь и раскаленные продукты горения;

    тепловые проявления химических реакций;

    тепловые проявления механической энергии;

    тепловые проявления электрической энергии.

Технологический процесс иногда ведут с использованием установок, где применяется открытое пламя для обработки металлов и других веществ, а также происходит утилизация отходов или сушка разных веществ с применением в качестве теплоносителей продуктов сгорания.

Раскаленные продукты горения, образующиеся в топках печей, котлов, ДВС и других агрегатов имеют температуру больше 1000°С, которой достаточно для зажигания практически любой среды (горючей пыли, волокнистых материалов, газо-паровоздушной смеси).

К тепловым проявлениям химических реакций относятся все химические реакции, которые протекают с выделением тепла в количестве, достаточном для нагрева применяемых веществ и материалов до температуры самовоспламенения.

К тепловым проявлениям механической энергии относятся искры, образующиеся при трении и ударах, а также тепло, выделяющееся при сжатии газов.

К тепловым проявлениям электрической энергии относятся искры КЗ, нагрев в местах больших переходных сопротивлений и при перегрузках, разряды атмосферного и статического электричества и другие.

Пример: В результате попадания дождевой воды в помещение склада шелкового комбината произошла химическая реакция натрия, который хранился в 55 барабанах гидросульфата (окислитель для отбеливания тканей). Вследствие химической реакции была загазована территория комбината и создалась угроза распространения отравляющего облака на близлежащий жилой массив. От влияния тепла, которое выделилось при этом, через 2 часа в складе возник пожар. Была организованна эвакуация людей с 2 жилых домов. Горение на составе было ликвидировано с помощью огнетушащего порошка.

Условия и пути распространения пожара

Развитие пожара может происходить при наличии соответствующих условий. К ним относятся: наличие в производственных помещениях запасов горючих веществ и материалов, наличие горючих конструкций, зданий и элементов технологического оборудования, позднее обнаружение пожара и несвоевременное сообщение о нем, отсутствие или неисправность первичных и стационарных систем пожаротушения, неквалифицированные действия при тушении пожара.

Быстрому распространению пожара будет оказывать содействие: наличие технологических отверстий в противопожарных препятствиях, применение транспортных систем в виде конвейеров, норий, самоточних труб, пневмотранспорта, отсутствие огнезадерживающих устройств, работающая вентиляция.

Страница 4 из 14

ПРОИЗВОДСТВЕННЫЕ ИСТОЧНИКИ ЗАЖИГАНИЯ

Источник зажигания - средство энергетического воздействия, инициирующее возникновение горения данной среды.

Под производственными источниками зажигания следует понимать такие источники, существование или появление которых связано с осуществлением технологических процессов производств.

Производственные источники зажигания характеризуются воспламеняющей способностью, которую оценивают упрощенно - путем сравнения температуры, теплосодержания и времени его теплового действия с соответствующими характеристиками горючей смеси.

При этом считают, что источник тепла опасен как источник зажигания, если:

температура искры Т и больше (или равна) температуре самовоспламенения горючей среды Т св, в контакте с которой находится искра

Т и ³Т св (1.33)

количество тепла, заключенное в искре, q и больше (или равно) минимальной энергии зажигания горючей среды q мин

q и ³ q мин (1.34)

время действия искры t и (определяется при охлаждении искры до Т св) больше (или равно) периода индукции горючей среды t инд:

t и ³ t инд.(1.35)

Если хотя бы одно из названных условий не выполняется, то искра не обладает воспламеняющейся способностью и, следовательно, она не может быть отнесена к источнику зажигания.

Параметры предполагаемого источника зажигания можно определить расчетным или опытным путем, а горючей среды - по справочной литературе.

В условиях производства существует большое количество различных источников зажигания.

Вероятность возникновения источника зажигания принимают равной нулю в следующих случаях:

  • если источник не способен нагреть вещество выше 80% значения температуры самовоспламенения вещества или температуры самовозгорания вещества, имеющего склонность к тепловому самовозгоранию;
  • если энергия, переданная тепловым источником горючему веществу (паро-, газо-, пылевоздушной смеси) ниже 40% минимальной энергии зажигания;
  • если за время остывания теплового источника он не способен нагреть горючие вещества выше температуры воспламенения;
  • если время воздействия теплового источника меньше суммы периода индукции горючей среды и времени нагрева локального объема этой среды от начальной температуры до температуры воспламенения.

По времени действия различают:

  • постоянно действующие (они предусмотрены технологическим регламентом при нормальном режиме работы оборудования);
  • потенциально возможные источники зажигания, возникающие при нарушениях технологического процесса.

По природе проявления различают следующие группы источников зажигания:

  • открытый огонь и раскаленные продукты сгорания;
  • тепловое проявление механической энергии;
  • тепловое проявление химических реакций;
  • тепловое проявление электрической энергии.

Следует иметь в виду, что эта классификация носит условный характер. Так, открытый огонь и раскаленные продукты сгорания имеют химическую природу проявления. Однако, учитывая особую пожарную опасность, эту группу принято рассматривать отдельно.

Открытый огонь и раскаленные продукты сгорания.

В условиях производства для осуществления многих технологических процессов используется открытое пламя, например, в аппаратах огневого действия (трубчатых печах, реакторах, сушилках и т. п.), при производстве огневых работ, при сжигании выбрасываемых в атмосферу паров и газов на факельных установках.

Поэтому открытый огонь и раскаленные продукты сгорания обычно используются или образуются в огневых печах, заводских факельных установках и при проведении огневых работ. Кроме этого, высоконагретые продукты сгорания, образующиеся при сжигании топлива в топках и двигателях внутреннего сгорания; искры топок и двигателей, образующиеся в результате неполного сгорания твердого, жидкого или газообразного топлива.

Мероприятия, предупреждающие пожары от открытого огня и раскаленных продуктов горения:

1. Изоляция аппаратов огневого действия:

1.1. рациональное размещение на открытых площадках;

1.2. устройство противопожарных разрывов;

1.3. устройство между аппаратами огневого действия и газопароопасными аппаратами экранов в виде стен или отдельных закрытых линий, выполненных из негорючих материалов;

1.4. устройство паровых завес по периметру печей с газоопасных сторон.

2. Соблюдение правил пожарной безопасности при проведении огневых работ.

3. Изоляция высоконагретых продуктов сгорания:

3.1. контроль за состоянием дымовых каналов;

3.2. защита высоконагретых поверхностей (трубопроводов, дымовых каналов) теплоизоляцией;

3.3. устройство противопожарных разделок и отступок и т.п.

4. Защита от искр при работе топок и двигателей:

4.1. соблюдение оптимальных температур и соотношения между топливом и воздухом в горючей смеси;

4.2. контроль за техническим состоянием и исправностью устройств для сжигания топлива;

4.3. систематическая очистка внутренних поверхностей топок, дымовых каналов и двигателей внутреннего сгорания от сажи и нагаромасляных отложений;

4.4. использование искроуловителей и искрогасителей (рис. 10 … 12).

Рис. 10. Схема гравитационного искроулови-теля:

1 - осадительная камера; 2 - смесь потока дымовых газов с искрами; 3 - направление движения дымовых газов; 4 - направление движения искр

Рис. 11. Схема инерционного искроулови-теля:

1 - топка; 2 - перегородка; 3 - направление движения дымовых газов; 4 - направление движения искр; 5 - искроосадительная камера

Рис. 12. Схема центробежного искроуловителя циклонного типа:

1 - корпус искроуловителя; 2 - смесь потока дымовых газов с искрами; 3 - тангенциальный патрубок; 4 - направление движения дымовых газов; 5 - направление движения искр; 6 - выгрузка охлажденных искр

5. Ограничение источников огня, не вызванных потребностями технологического процесса:

5.1. оборудование мест для курения;

5.2. применение горячей воды, пара, для обогрева замерзших труб;

5.3. распаривание и очистка скребками отложений в аппаратах вместо их выжигания.

Тепловое проявление механической энергии.

При взаимном трении тел за счет совершения механической работы происходит их разогрев. При этом механическая энергия переходит в тепловую. Тепловой нагрев, т. е. температура трущихся тел в зависимости от условий трения может быть достаточной для воспламенения горючих веществ и материалов. При этом нагретые тела выступают в качестве источника зажигания.

В производственных условиях наиболее распространенными случаями опасного нагрева тел при трении являются:

  • удары твердых тел с образованием искр;
  • поверхностное трение тел;
  • сжатие газов.

Пожар относится к крайне неприятным событиям, которые могут повлечь за собой не только порчу вещей, но и смерть человека. Однако для возникновения возгорания необходимо, чтобы были соблюдены некоторые определенные условия. Главными составляющими являются горючая среда и воздействующие на нее источники зажигания.

В данной статье мы постараемся дать определение этим понятиям, рассмотреть их виды, а также расскажем, как можно предотвратить возгорание путем исключения условий образования горючей среды.

Определение и виды источников зажигания

Началом любого воспламенения можно назвать момент воздействия источника на любое горючее вещество.

Источник зажигания это средство, обладающее достаточным объемом энергии, температурой, которое при длительном воздействии на внешнюю среду способно вызвать воспламенение(горение).

Для того чтобы более точно понять определение, нужно рассмотреть источники зажигания и их классификацию. В основе их разделения лежит тот или иной вид энергии, поэтому источники бывают: электрические, химические, термические и механические.

Если в качестве примера взять обычную квартиру, то условно виды источников зажигания обозначим так:

  • Тепло от электрических обогревателей или водонагревателей
  • Искры, возникающие в процессе сварочных работ, например при ремонте труб
  • Открытый огонь (не потушенная папироса, горящая свеча, камин, зажженная спичка, рабочая конфорка газовой плиты)
  • , а так же вещества. Это горючие ископаемые, вещества химические, некоторые растительные продукты (масла, жиры).
  • Нарушения в работе различных электрических аппаратов и/или приборов (перегрузка, неисправность)

Перечисленные виды это возможные источники зажигания, которые вполне могут привести к пожару Вашей квартире, воздействуя высокой температурой на горючую среду. Дальше рассмотрим, что в нее входит и как она образуется.

Условия образования и виды горючей среды

Горючая среда – это все то, что может воспламениться при воздействии источника зажигания, другими словами, она может представлять собой любую внешнюю среду, воспламеняющуюся при соприкосновении с тем или иным источником зажигания, при этом обладает способностью самостоятельного горения даже после ликвидации этого источника.

Если описать проще, то это все, что есть в помещении, включая, воздух, в котором содержится кислород, являющейся необходимым элементом для начала возгорания. В науке данную среду назвали « ». Усредненной величиной является 50 кг такой среды на 1 м квартиры.

В зависимости от того, что в нее входит, она с разной силой может быть подвержена возгоранию. Существуют 3 класса веществ и материалов: негорючие, трудногорючие и горючие. Следует заметить, что каждое горючее вещество имеет индивидуальную . Температура в 300 о С является максимальной для большинства твердых материалов.

Чтобы узнать, к какому классу пожарной опасности относится то или иное оборудование или вещество необходимо заглянуть в сопроводительный документ.

Что относится к горючей среде

  1. Предметы интерьера и быта (одежда, книги, посуда), а также любое оборудование, имеющее в своем составе горючие материалы.
  2. Пыль, горючие газы (ацетилен, водород, метан, пропан), которые применяются в производствах.
  3. Отделочные и строительные материалы, облицовка, а также кабели, воздуховоды.

Предсказать поведение горючей среды в случае пожара крайне проблематично. В первые минуты обычно пламя устремляется к потолку. По мере того, как температура в помещении повышается, начинают воспламеняться горючие материалы, попадающие под ее действие. Происходит это в хаотичном порядке.

  1. Количество горючего вещества должно быть ограничено.
  2. Потенциальные источники зажигания следует отгородить от горючей среды с помощью использования изолированных отсеков.
  3. Нужно осуществлять контроль над концентрацией окислителя в среде, по возможности сделать ее минимальной.
  4. Поддерживать в помещении такую температуру, при которой риск возгорания будет минимальным.
  5. Оборудование, имеющее высокий класс пожарной опасности следует располагать на открытых территориях.
  6. Использование негорючих илии трудногорючих веществ (материалов).

Профилактические мероприятия по предотвращению пожара

Самым непредсказуемым источником зажигания принято считать открытый огонь. Для того чтобы снизить его опасность, необходимо придерживаться здравого смысла и определенных .

Касаемо курения в тамбурах или жилых помещениях, то для пепла должна быть пепельница, изготовленная из толстого стекла или негорючего пластика. Когда уходите из дома закрывайте окна, т.к. не потушенная сигарета, выброшенная из соседнего балкона, часто становится причиной возникновения пожара, ведь по статистике на балконе хранится много вещей, которые и образуют “пожарную нагрузку”.

К газовым плитам обязательно должны прилагаться сертификаты качества. Если обнаружена неисправность, то необходимо прекратить пользоваться плитой и вызвать мастера. Между плитой и легкосгораемыми предметами, включая строительные конструкции должно выдерживаться расстояние более 20 см. В деревянном доме стены необходимо изолировать от источника зажигания штукатуркой или стальным листом, .

Устанавливать газовые приборы имеет право только специалист. По окончании работы он оформляет акт о пуске прибора в эксплуатацию и выдает гарантию на дальнейшее обслуживание.

Водонагреватели не прикрепляются на неизолированные стены. перед каждым отопительным сезоном.