Домой / Образцы документов / Освоение подземного пространства городов. Использование подземного пространства городов

Освоение подземного пространства городов. Использование подземного пространства городов

Подземное пространство недр

"...1. Подземным пространством признается часть недр, используемая в качестве среды для пребывания людей, размещения объектов производственной, научной и иной деятельности, а также используемая в качестве среды для протекания имеющих практическое применение процессов.

2. Объектами подземного пространства могут быть естественные или искусственно созданные полости недр, а также иные участки недр, пригодные для использования в целях, указанных в пункте 1 настоящей статьи.

3. Не признаются составной частью подземного пространства участка недр находящиеся в пределах этого участка иные ресурсы недр, в том числе и энергия.

4. К подземному пространству не относятся естественные полости, которые полностью заполнены твердыми, жидкими, газообразными веществами и (или) их смесями, находящимися в естественном (природном) состоянии..."

Источник:

"МОДЕЛЬНЫЙ КОДЕКС О НЕДРАХ И НЕДРОПОЛЬЗОВАНИИ ДЛЯ ГОСУДАРСТВ-УЧАСТНИКОВ СНГ"


Официальная терминология . Академик.ру . 2012 .

Смотреть что такое "Подземное пространство недр" в других словарях:

    Недра - (Subsoil) Недра, часть земной коры Понятие и состав фонда недр, право пользования недрами Содержание Содержание Раздел 1. Понятие, объекты и субъекты права пользования. — это часть земной коры, расположенная ниже почвенного слоя, а при его … Энциклопедия инвестора

    Государственная собственность на недра - 1) (для целей Конституции Российской Федерации) форма собственности на землю и другие природные ресурсы; 2) (для целей Закона Российской Федерации О недрах) форма собственности на недра, объектами которой являются: а) недра в границах территории … Экологическое право России: словарь юридических терминов

    Недра - являются частью земной коры, расположенной ниже почвенного слоя, а при его отсутствии ниже земной поверхности и дна водоемов и водотоков, простирающейся до глубин, доступных для геологического изучения и освоения. Н. в границах территории… … Большой юридический словарь

    Центральная Америка - (Central America) Сведения о Центральной Америке, история и география Центральной Америки Сведения о Центральной Америке, история и география Центральной Америки, политика и экономика Содержание Содержание 1. География Берега Рельеф Геологическое … Энциклопедия инвестора

    Подземные сооружения - (a. underground structures; н. unterirdische Bauwerke; ф. ouvrages souterrains; и. instalaciones subterraneas) объекты пром., c. x., культурного, оборонного и коммунального назначения, создаваемые в массивах горн. пород под дневной… … Геологическая энциклопедия

    Подземная лодка - У этого термина существуют и другие значения, см. Подземная лодка (значения) … Википедия

    ТЕРРИТОРИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ - земли городских, сельских поселений, прилегающие к ним земли общего пользования и другие земли в границах муниципального образования независимо от форм собственности. Соответственно местное самоуправление осуществляется в городских, сельских… … Энциклопедический словарь «Конституционное право России»

Освоение подземного пространства городов

Использование подземного пространства для размещения различных по на­значению инженерных сооружений является принципиально новой проблемой не только в градостроительстве, но и в области инженерной геологии. Необходи­мость освоения подземного пространства тесно связана с проблемой эффектив­ного использования свободной городской территории, которая последние годы стала особенно актуальна. Особенное значение эта проблема приобретает для крупных городов, в которых освоение подземного пространства будет способство­вать созданию наиболее компактных городских структур, обеспечивающих мак­симальный комфорт для жизнедеятельности человека. Традиционная городская застройка, осуществляемая в настоящее время почти полностью на поверхности земли, приводит к неоправданному разрастанию городов вширь, порождает транс­портные, трудовые, хозяйственно-бытовые и другие неудобства для населения.

Вместе с тем существует большая группа зданий и сооружений, которые по своему функциональному назначению могут быть успешно размещены в подзем-

ном пространстве. К номенклатуре подобных зданий и сооружений относятся здания культурно-бытового назначения, гаражи, телефонные, тепловые и элект­рические станции, складские помещения и хранилища, транспортные коммуни­кации и многие другие инженерные сооружения, занимающие в настоящее время большую площадь ценных городских территорий. Размещение этих сооружений в подземных объемах города позволит значительно приблизить их к сферам оби­тания и приложения труда человека, высвободит часть городских территорий для создания дополнительных зон рекреации и озеленения. Осуществление назван­ных мероприятий будет способствовать улучшению архитектурно-планировоч­ных решений и одновременно созданию качественно новой городской среды, со­ответствующей более полному удовлетворению эстетических, бытовых и произ­водственных потребностей городского населения.

Использование подземного пространства ставит перед инженерной геологией необходимость решения целого ряда специальных теоретических и методических вопросов при проектирования подземных зданий и сооружений.

Инженерно-геологические исследования для обоснования подземного строи­тельства и разработка прогнозов взаимодействия геологической среды с подзем­ными сооружениями должны осуществляться в трех аспектах:

Изучение инженерно-геологических и гидрогеологических условий и их из­менений в плане и по глубине применительно к подземному строительству;

Изучение влияния подземного строительства на изменение природных ин­женерно-геологических и гидрогеологических условий и прогнозирование воз­можности и степени развития неблагоприятных инженерно-геологических про­цессов и явлений;

Изучение шшяния инженерно-геологических и гидрогеологических условий, а также возможных неблагоприятных инженерно-геологических процессов на подземные и наземные здания и сооружения и выработка технических мероприя­тий по их защите.

Строительство подземных сооружений вызывает в большинстве случаев зна­чительное изменение природных инженерно-геологических и гидрогеологиче­ских условий. Оно начинается с момента производства строительных работ и продолжается в результате взаимодействия геологической среды и подземных со­оружений в процессе их эксплуатации. Характер и интенсивность изменений гео­логической среды определяются многими факторами, из которых наиболее важ­ными являются: геологическое строение и гидрогеологические условия, литоло-гический состав и физико-механические свойства пород, способ производства строительных работ, глубина заложения сооружений и их конструктивные осо­бенности.

Изучение изменений геологической среды в связи с подземным строитель­ством, их долгосрочное прогнозирование имеют исключительно важное значе­ние. Знание возникающих в результате подземного строительства инженерно-гео-

логических процессов и явлений необходимо не только для правильного проекти­рования, строительства и надежной эксплуатации сооружений, но также для про­гнозирования нежелательных физико-геологических процессов и явлений, кото­рые могут происходить на поверхности земли в пределах существующей город­ской застройки и благоустройства.

В процессе производства подземных строительных работ, сопровождающих­ся выемкой тем или иным способом определенного объема пород, вокруг горных выработок формируются зоны нарушения и сдвижения, в пределах которых по­роды приобретают новые физико-механические свойства и качественные состоя­ния. Эти изменения вызываются нарушением природного напряженного состоя­ния пород и их подвижками в зонах, примыкающих к горным выработкам. При этом формируется комплекс новых геодинамических процессов и явлений, среди которых наибольшее развитие получают: сдвижение и разуплотнение пород, раз­рушение и потеря связности, расслоение и пластические деформации, выжима­ние и разрывы сплошности. Подобные процессы приводят, как правило, к значи­тельному ухудшению строительных свойств пород и их устойчивости, вызываю­щему необходимость выполнения специальных предупредительных мероприятий (техническая мелиорация, устройство шпунтовых ограждений, крепежных при­способлений и т.д.).

Степень развития этих процессов определяется многими факторами: физико-механическими свойствами и состоянием пород, их обводненностью, применяе­мыми способами водопонижения, подземным строительством, соблюдением тех­нологии работ, объемом подземных выемок.

Особую опасность при осуществлении подземного строительства представ­ляют отступления от технологии работ, внезапные прорывы вод, плывунов и га­зов, приводящие к возникновению аварийных ситуаций не только в подземных выработках, но и в наземных зданиях и сооружениях. В практике известны при­меры, когда подобные явления вызывали потерю устойчивости больших масси­вов пород, их подвижка принимала лавинообразный характер и достигала повер­хности земли. Вместе с тем стабилизация этих подвижек может происходить дли­тельное время и оказывать постоянное воздействие на существующие подземные и особенно наземные здания и сооружения.

Искусственное снижение уровня подземных вод, являющееся непременным условием эффективного производства подземных строительных работ, оказывает значительное влияние на наземные строения и подземные инженерные коммуни­кации. Вызываемое им уплотнение грунтов, преимущественно водоносных, сжи­маемых, может приводить к возникновению дополнительных и неравномерных осадок зданий и сооружений и развитию в них недопустимых деформационных повреждений. Поэтому с началом производства подземных строительных работ необходимо устанавливать систематические визуальные и инструментальные гео­дезические наблюдения за существующими наземными зданиями, сооружения-



ми, подземными коммуникациями и окружающей территорией. Необходимость таких наблюдений вызывается как осадкой зданий и сооружений в связи с пони­жением уровня подземных вод, так и образованием ранее рассмотренных зон подвижек пород в процессе проходки горных выработок.

К значительному изменению природных инженерно-геологических и гидро­геологических условий приводит не только влияние подземных строительных работ, но и возникновение отрицательных инженерно-геологических процессов и явлений. Сами подземные сооружения, взаимодействуя с окружающей геологи­ческой средой, могут служить причиной появления новых субтерральных про­цессов. Например, окончание подземных строительных работ, а вместе с ним и водопонижение приводит к восстановлению прежнего гидродинамического ре­жима подземных вод. Однако выстроенные подземные сооружения препятствуют стоку подземных вод, образуя значительный подпор. Это вызывает не только по­вышение уровня подземных вод и вследствие этого изменения физико-механи­ческих свойств пород, но также значительные изменения скоростей их фильтра­ции. Повышение уровня подземных вод может оказывать значительное влияние на устойчивость оснований наземных строений и окружающих территорий, яв­ляется причиной подтопления подвалов и аварий подземных инженерных сетей. Увеличение скоростей фильтрации при определенных геолого-литологических условиях может явиться причиной появления процессов суффозии, активного выщелачивания и других, которые будут ухудшать условия эксплуатации назем­ных и подземных инженерных сооружений.

Активное использование подземного пространства, открывающее широкие перспективы в области реализации важных градостроительных задач, требует от инженерной геологии разработки качественного и своевременного инженерно-геологического обоснования.

Лекция №1. Состояние и перспективы освоения подземного пространства.

Подземное строительство имеет почти столь же долгую историю, как история человечества. Первобытные люди использовали в качестве жилищ естественные пещеры. Позднее, в бронзовом веке, появились выработки для добычи руд, драгоценных металлов и камней. Древние цивилизации Египта, Индостана оставили после себя впечатляющие памятники подземного зодчества – храмы, подземные лабиринты усыпальниц фараонов. В городе Петра (Иордания) до сих пор сохранились вырубленные в красном песчанике культовые сооружения и жилища. В римской империи подземное строительство достигло высокого уровня. До сих пор в Европе функционируют несколько дорожных и гидротехнических тоннелей, построенных руками рабов по проектам римских инженеров. Дренажный тоннель у озера Фучино (Италия) имеет длину 5,6 км и сечение 1,8´З м.

Проходку тоннелей в скальных породах вели следующим образом. В забое тоннеля разжигался сильный костер, затем раскаленную грудь забоя поливали холодной водой. От сильных термических напряжений породы трескались на небольшую глубину и поддавались разборке ручным инструментом.

Подземное строительство продолжало развиваться и в Средние века. Системы оборонных сооружений крепостей и замков непременно содержали подземные ходы. При штурме Казани войска Ивана Грозного применили минный заряд, заложенный в штольне, которая была пройдена под городской стеной. Средневековые горные выработки, например соляные шахты Величка в Польше, удивляют современных инженеров своей устойчивостью, обязанной мастерству, «чувству камня» их строителей. Средневековые системы водоснабжения и канализации функционируют до сегодняшнего дня во многих городах Европы и Азии. Подземные пещеры Киево-Печерской Лавры свидетельствуют, что средневековая церковь считала подземное пространство вполне пригодным для жизни монахов, а не только обиталищем «нечистых сил».



Эпоха промышленной революции дала новые возможности для ведения подземного строительства – мощные взрывчатые вещества, механические способы бурения, погрузки, транспортирования пород. Одновременно возросли потребности в различного вида подземных сооружениях. Начиная с середины XIX века ведется строительство железнодорожных тоннелей: тоннель Мон-Сенис длиной 12850 м между Францией и Италией построен в 1875–71 гг., Сен-Готард длиной 14984 м – в 1872–82 гг. и Симгаюнский длиной 19780 м – в 1898–1906 гг. между Италией и Швейцарией. В России первый железнодорожный тоннель длиной 1280 м построен в 1868 г.; Сурамский тоннель длиной 3998 м, построенный в 1886–90 гг., до строительства Байкало-Амурской магистрали оставался самым длинным тоннелем СССР.

Широкое распространение получила подземная добыча угля, руд. Был построен даже ряд подземных тоннелей - каналов для пропуска судов через водораздельные участки, в том числе Ронский тоннель на водной магистрали Марсель – Рона (Франция) длиной 7118 м с размерами поперечного сечения 24,5´17,1 м.

С начала XX столетия возросла роль подземного строительства в урбанистике. Почти одновременно в ряде европейских столиц и крупнейших городах Америки прокладываются городские подземные транспортные артерии - метрополитен. С развитием военной авиации перед второй мировой войной в европейских городах приступили к строительству бомбоубежищ, а в Германии были построены подземные военные заводы.

В настоящее время, к рубежу XX и XXI столетий, подземные и заглубленные сооружения стали полноправным элементом городской застройки, присутствуют во многих технологических комплексах.

Подземные сооружения играют важную роль в охране окружающей среды, помогая сберегать поверхность земли. К достоинствам подземных помещений относятся защищенность от атмосферных воздействий, возможность поддержания желаемого температурного режима при низких энергетических затратах. Подземное помещение уменьшает или сводит к нулю связь размещенных в нем объектов с окружающей средой, поэтому там целесообразно размещать вредные и опасные производства.

Объем подземного строительства (без учета выработок горнодобывающей промышленности) в ряде развитых капиталистических стран характеризовался за последние десятилетия следующими цифрами, млн. м 3:

Учитывая малую численность населения Швеции, ее следует признать страной с самым интенсивным подземным строительством: за десятилетие (1970–80 гг.) там построено 4,5 м 3 подземного пространства на каждого жителя. Общий объем подземного строительства в Швеции распределяется приблизительно следующим образом: электростанции – 50 %, транспорт (тоннели, гаражи) – 5 %, коммуникации – 5 %, нефтехранилища – 40 %.

Раздел «Подземные сооружения» курса «Основания, фундаменты и подземные сооружения» является новым для студентов специальности «Промышленное и гражданское строительство». В отличие от курсов «Подземные сооружения", читаемых в горных и гидротехнических вузах, в данном курсе наибольшее внимание уделено подземным сооружениям малого заглубления, являющимся элементами промышленных комплексов или городской урбанистики.

Лекция № 2-3. Классификация и конструкции подземных сооружений.

Классификация.

По назначению выделяют подземные сооружения: коммунально-бытового назначения (подвальные этажи зданий, подземные гаражи, подземные склады магазинов, подземные холодильники, хранилища продуктовых товаров, подземные кинотеатры, и т. д.);

– промышленно-технологические сооружения (емкости очистных водопроводных и канализационных сооружений, заглубленные части дробильно-сортировочных цехов обогатительных фабрик, металлургических производств, подземные атомные котельные и т. д.);

– сооружения гражданской обороны и оборонные (убежища различных классов, командные пункты, шахты для хранения и запуска баллистических ракет и т. д.); транспортные и пешеходные тоннели (горные автомобильные и железнодорожные тоннели для преодоления высоких перевалов, подводные тоннели под реками и морскими проливами, тоннели метрополитена, городские автомобильные и железнодорожные тоннели, пешеходные подземные переходы);

– тоннели городских коммунальных сетей (канализационные, тоннели-коллекторы для прокладки силовых, телефонных кабелей, водопровода и др.);

– гидротехнические подземные сооружения (напорные тоннели, камеры машинных залов ГЭС, подземные бассейны гидроаккумулирующих электростанций);

– выработки для добычи полезных ископаемых (для добычи угля – шахты, руды – рудники);

– хранилища нефтепродуктов и газов, ядовитых и радиоактивных отходов.

Подземные сооружения могут размещаться: в комплексе с надземными зданиями; в сочетании с подземными инженерно-транспортными сооружениями: в специально проводимых выработках под улицами, площадями, скверами; в специальных выработках за чертой города: в отработанных горных выработках.

По глубине заложения подземные сооружения разделяют на заглубленные, малой глубины заложение, глубокие. Над заглубленными сооружениями нет слоя грунта, они перекрыты сверху искусственными конструкционными материалами или вообще представляют собой подземную часть здания.

Над подземными сооружениями малой глубины заложения имеется слой грунта до 10 м. Вес объектов, расположенных па поверхности, вносит свой вклад в давление грунта на обделку подземных сооружений малой глубины заложения.

Подземные сооружения большей глубины заложения относят к разряду глубоких. Давление на обделку этих сооружении уже не зависит от обстановки на поверхности, а определяется только свойствами окружающих пород и глубиной заложения.

Выделяют следующие способы строительства подземных сооружений малой глубины заложения и заглубленных (рис. 2.1):

Котлованный. Этот способ используется при строительстве заглубленных сооружений малой глубины заложения. В грунте отрывается котлован, на дне которого, как на поверхности, возводится сооружение. После завершения строительства котлован засыпается грунтом.

Опускного колодца. Этим способом строятся заглубленные сооружения. При этом боковые ограждающие стены сооружения возводятся на поверхности. Грунт из средней части послойно удаляется, и стены сооружения опускаются в грунт.

«Стена в грунте» Этим способом также возводятся заглубленные сооружения. С поверхности по контуру сооружения отрывается узкая траншея па глубину сооружения. Для обеспечения устойчивости стен траншея заполняется глинистым раствором. Траншея откапывается частями и заполняется бетоном Выемка грунта производится уже под защитой возведенных стен сооружения.

«Горный (закрытый) способ строительства. Строительство тоннелей и других глубоких сооружений ведется подземными способами и включает (рис. 2.2.): отделение породы от массива (отбойку, резание); погрузку ее на транспортные средства; транспортировку; устройство временной крепи, обеспечивающей безопасность работы в забое; возведение постоянной обделки, обеспечивающей устойчивость и водонепроницаемость выработки.

Способы проходки тоннелей делятся на горные и щитовые. В горных способах все операции (отбойка, погрузка, транспорт, возведение временной крепи и постоянной обделки) расчленены и выполняются в циклическом режиме с применением различных средств механизации. В щитовых способах проходки резание пород, погрузку и возведение постоянной обделки выполняют механизмы, объединенные в одном агрегате–проходческом щите, роль временной крепи выполняет специальный подвижный элемент – собственно щит. Тоннели мелкого заложения могут строиться и котлованным способом.

Заглубленные жилые дома

Многие сотни тысяч лет первобытный человек использовал в качестве жилищ природные или специально открытые пещеры, всегда обращался к земле, чтобы укрыться от неблагоприятных климатических условий. Лишь исторически непродолжительная эра доступного и дешевого топлива позволила строить возвышающиеся над уровнем земной поверхности тонкостенные дома и снабжать эти энергетически неэкономичные дома теплом. Теперь, когда количество природного топлива сокращается, настало время пересмотреть взгляды на строительство.

В США, Канаде, ряде других стран начинает развиваться строительство заглубленных домов с земляной теплозащитой. В конце 70-х годов около 5 % новых индивидуальных домов в США строилось в заглубленном исполнении; наблюдается тенденция роста этой величины, особенно в районах с суровыми зимами. К преимуществам заглубленных жилищ, как и других подземных сооружений, относятся сокращение энергетических затрат на отопление зимой и охлаждение летом, сокращение затрат на наружный ремонт, лучшая звукоизоляция, устойчивость против штормовых воздействий. Проектирование заглубленных жилищ предусматривает множество различных способов сохранения энергии, например, пассивное использование солнечной энергии, рекуперацию тепла из вентиляционных выбросов и канализационных стоков и др. Нет сомнения, что грандиозная программа обновления жилья в сельских местностях СССР представляет исключительные возможности для развития этого вида жилищного строительства.

Основные типы заглубленных жилищ в условиях плоского падающего рельефа приведены на рис. 1.21. Дом атриумного типа (рис. 1.21, а) находится полностью ниже уровня земли, имеет внутренний дворик, в наибольшей степени защищен от ветров. Недостатком его является отсутствие вида на местность из окон, выходящих во внутренний двор. Обычно атриумная планировка применяется в условиях теплого климата. В условиях равнинной местности с суровым климатом чаще всего возводятся полузаглубленные дома (рис. 1.21, б). «Падающий рельеф» холмистой местности наиболее благоприятен для строительства заглубленных домов (рис. 1.21, в и г). В таких условиях возможно строительство одно- и двухэтажных домов; при этом отсутствует основной недостаток заглубленных жилищ в условиях равнинной местности: ограничение вида на местность, что является довольно существенным эстетическим и психологическим фактором.

Правильная ориентация здания по отношению к солнцу и ветру может обеспечить значительную дополнительную экономию энергии. Энергия солнечной радиации может быть использована для получения тепла в активной и пассивной форме. Большинство активных систем использования солнечной энергии имеют плоские коллекторы, устанавливаемые непосредственно на здание или по соседству с ним. Так системы не предъявляют жестких требований к ориентации здания. Прогрев помещения солнцем через окна называется пассивным использованием солнечной энергии; наибольший эффект при этом достигается при ориентировке окон на юг. В северном полушарии наибольшие теплопотери зимой связаны с ветрами северных румбов, так что ориентация оконных и дверных проемов заглубленного жилища на юг обеспечивает и наилучшую защиту от ветра.

Геомеханические процессы.

Строительство горных выработок и подземных сооружении вызывает нарушение начального напряженно-деформированного состояния породных массивов. Возникающие в результате этого механические процессы деформирования приводят к формированию нового равновесного напряженно-деформированного состояния породных массивов в окрестности выработок. Новое поле напряжений и деформаций условно будем называть полным, имея в виду, что оно сформировалось в результате наложения на начальное поле дополнительного поля напряжений и деформаций, образовавшегося при сооружении выработки.

Знание основных закономерностей деформирования породного массива позволяет прогнозировать возможные реализации механических процессов. Сложность этой задачи определяется прежде всего большим числом влияющих факторов. В общем случае породный массив представляет собой дискретную, неоднородную, анизотропную среду, механические процессы деформирования в которой носят нелинейный временной характер. Кроме геологических факторов большое влияние оказывают инженерно-технические условия строительства и, в частности, форма и размеры выработок, их ориентация в массиве, способ проходки и поддержания, технология крепления и др.

Очевидно, что при одновременном учете всех этих факторов аналитическое описание закономерностей процесса формирования напряженно-деформированного состояния практически невозможно. Вместе с тем многолетний опыт и знания, накопленные в механике горных пород, показывают, что при любом сочетании влияющих факторов всегда может быть выделен один-два главных, имеющих определяющее значение для характера реализации механических процессов. Так, например, при строительстве тоннеля в скальных породах из всех факторов главнейшим будет трещиноватость пород. Именно она обусловливает в данном случае реализацию механических процессов в виде локальных вывалов или сплошного сводообразования. В качестве другого при мера можно привести случай, когда определяющими факторам» будут форма и размеры выработки. Так, в кровле очистной горной выработки прямоугольной формы, имеющей ширину, значительно большую, чем высоту, возникают опасные для ее эксплуатации растягивающие напряжения. Число подобных примеров, можно было бы продолжить.

Все вышесказанное позволяет определить методический подход к изучению основных закономерностей процесса формирования напряженно-деформированного состояния породного массива вокруг горных выработок.

Вначале предлагается рассмотреть простейшую задачу, ее решение принять за базовое, а затем в сравнении с этим решением изучить влияние различных естественных (природных) и искусственных (технологических) факторов на напряженно-деформированное состояние породного массива.

В качестве такой базовой задачи рассмотрим полное поле напряжений в окрестности горизонтальной протяженной горной выработки кругового поперечного сечения,пройденной на достаточно большой глубине в сплошном однородном изотропном породном массиве с равнокомпонентным начальным напряженным состоянием q, предполагая линейную физическую зависимость между напряжениями и деформациями, т. е. рассматривая породный массив как линейно-деформируемый. Будем предполагать, что реактивный отпор крепи р равномерно распределен по контуру выработки. В такой постановке граничные условия имеют вид

s r = p при r = 1 при r à ¥. (7.1*)

Решая соответствующую задачу теории упругости в постановке плоской деформации при m = 0.5, получаем в цилиндрической системе координат (r , q – в плоскости поперечного сечения выработки, z – продольная ось выработки) следующие полные-напряжения:

и безразмерные смещения

(7.2)

где s q , s r – соответственно тангенциальное (окружное) и радиальное нормальные напряжения; s z – нормальное напряжение в направлении продольной оси выработки; t r q , t rz , t qz – касательные напряжения; и – безразмерные радиальные смещения; Е – модуль деформации горных пород; r – безразмерная радиальная координата рассматриваемой точки породного массива, выраженная в единицах радиуса выработки, в проходке R b .

Соответствующее начальное поле напряжений характеризуется компонентами

а дополнительное поле напряжении – компонентами

Для наглядности распределение компонентов s q и s r полного (сплошные линии), начального (штрихпунктирные линии) и дополнительного (пунктирные линии) полей напряжений показано на рис. 7.1.

Окружающие выработку породы имеют ограниченную несущую способность, т. е. способность сопротивляться увеличению напряжений, и могут деформироваться без разрушения в определенных пределах. Поэтому следствием сформировавшегося в результате проведения выработок нового напряженно-деформированного состояния могут быть процессы разрушения горных пород, проявляющиеся в одних породах в виде хрупкого разрушения, в других – в виде пластического течения. В результате вокруг выработки образуются области запредельного состояния и полного (руинного) разрушения, которые могут охватывать весь контур выработки или отдельные его части. Деформируемость разрушенных пород повышается, а это в свою очередь вызывает значительное увеличение смещений породного контура.

Таким образом, образование в породном массиве частично или полностью разрушенных областей пород является одной из форм реализации механических процессов деформирования пород или, как принято говорить, одной из форм проявления горного давления. Частичное или сплошное сводообразование, значительные смещения породного контура, т. е. основные источники формирования нагрузок на конструкции подземных сооружений, являются следствием процессов разрушения. Поэтому знание основных закономерностей разрушения поре вокруг выработок необходимо для качественной и количественной оценки возможных проявлений горного давления и, следовательно, и научно обоснованного выбора способов и средств борьбы с этими проявлениями.

Как уже отмечалось ранее, разрушение пород протекает различно как в виде хрупкого разрушения, так и путем пластического деформирования. Поэтом для математического анализа механических процессов разрушения используются различные геомеханические модели.

В хрупкоразрушающихся породах образование области предельного равновесия может привести к нарушению сплошности массива на внешней границе этой области, что математически выражается в виде неравенства тангенциальных нормальных напряжений, действующих по обе стороны от указанной границы, процессе разрушения изменяются механические характеристики пород в области предельного равновесия и, в частности, прочность пород на сжатие уменьшаете до величины остаточной прочности. Этому случаю соответствует модель идеально-хрупкой среды, определяемая диаграммой деформирования Оаb (рис. 8.1) физическим уравнением (5.69) на запредельном участке деформирования.

В пластичных породах образование области предельного равновесия может происходить без столь заметных разрушений, как в хрупких, и проявляется в виде пластического течения без разрывов сплошности. При этом в определенном диапазоне деформации существенного изменения механических характеристик не происходит. Это позволяет использовать в данном случае модель идеалы» пластичной среды, показанную на рис. 8.1 в виде диаграммы Оас , и физическое уравнение (5.67) на запредельном участке деформирования.

Нагрузки и воздействия.

Расчеты при проектировании колодцев должны производится на нагрузки и воздействия, которые определяются условиями строительства и эксплуатации сооружения (рис. 1).

Расчетные значения веса стен G 0 , кН, днища G д, кН и тиксотропного раствора G т , кН определяются по проектным размерам элементов, принимая вес железобетонных конструкций в соответствии с требованиями главы СНиП по проектированию бетонных и железобетонных конструкций (II).

Горизонтальное давление грунта на колодец формируют следующие нагрузки:

а) основное давление грунта определяется как давление грунта в состоянии покоя по формуле:

, (1)

где g – удельный вес грунта, кН/м 3 ;
z – расстояние от поверхности грунта до рассматриваемого сечения, м;
j – угол внутреннего трения грунта.

Для колодцев, погружаемых ниже уровня грунтовых вод, удельный вес грунта принимается с учетом взвешивающего действия воды, т. е.

где g s – удельный вес частиц грунта, кН/м 3 ;
g w – удельный вес воды, принимается 10 кН/м 3 ;
e – коэффициент пористости грунта.

б) основное давление тиксотропного раствора в период погружения колодца определяется по формуле:

где g 1 – удельный вес тиксотропного раствора, кН/м 3 .

в) дополнительное давление грунта, вызываемое наклоном пластов:

где a – коэффициент, зависящий от наклона пластов (принимается по (2), с. 14).

г) гидростатическое давление грунтовых вод, учитываемое во всех грунтах, кроме водоупорных:

, (5)

где h b – расстояние от поверхности грунта до уровня грунтовых вод, м.

д) дополнительное давление от сплошной вертикальной равномерно-распределенной вокруг сооружения нагрузки q:

, (6)

е) дополнительное давление от вертикальной сосредоточенной нагрузки <2 или от нагрузки, равномерно распределенной по прямоугольной площади поверхности. Определяется по рекомендациям работы (2), с. 19-24.

Усилия трения ножа колодца по грунту определяются по формуле:

, (7)

где т –коэффициент условий работы. При расчете на всплытие т = 0.5, на погружение m = 1;

и –наружный периметр ножа колодца, м,

h u – высота ножа, м;

f – сопротивление грунта по боковой поверхности ножевой части, кПа. Определяется по таблице (/2/, с. 17). Для ориентировочных расчетов можно принять (при погружении колодца на глубину до 30 м):

– пески гравелистые, крупные и средней крупности 53 – 93

– пески мелкие и пылеватые 43-75

– суглинки и глины твердые и полутвердые 47 – 99

– супеси твердые и пластичные, суглинки и глины туго- и мягкопластичные 33 – 77

– супеси, суглинки и глины текучие и текучепластичные 20 – 40

усилия трения стен колодца в зоне тиксотропной рубашки определяются по формуле:

, (8)

где Н т –высота тиксотропной рубашки, м;
Т° –удельная сила трения стен колодца в зоне тиксотропной рубашки, принимается 1–2 кПа. При расчете на всплытие (после тампонажа щели тиксотропной рубашки цементно-песчаным раствором) 40 кПа.

Усилия сопротивления грунта под банкетной ножа определяются по формуле:

где R – расчетное сопротивление грунта основания, принимается в соответствии с рекомендациями работы /12/, с. 37 (табл. 1-5); F u – площадь подошвы ножа, м 2 .

Расчет колодца.

Расчет погружения колодца производится из условия:

, (10)

где G –вес колодца и пригрузки с учетом коэффициента надежности по нагрузке g f = 0,9;
g f1 –коэффициент надежности погружения: g f1 > 1 –в момент движения колодца, g f1 = 1 – в момент остановки колодца или яруса на проектной отметке.

Колодцы, погружаемые ниже уровня грунтовых вод, после устройства днища должны рассчитываться на всплытие в любых грунтах (за исключением случая, когда под днищем выполняется дренаж) на расчетные нагрузки из условия:

, (11)

где SG – сумма всех постоянных вертикальных нагрузок с учетом пригрузки с коэффициентом надежности по нагрузке g f = 0,9;
F g –площадь днища, м 2 ;

h w –расстояние от низа днища до уровня грунтовых вод, м;

g fw – коэффициент надежности против всплытия, равный 1,2.

Примеры расчета.

Рассчитать колодец с внутренним диаметром 20 м, глубиной 30 м, на нагрузки и воздействия, возникающие в условиях строительства (рис. 2 а). Колодец погружается в тиксотропной рубашке (g 1 =15.0 кН/м 3) с применением водопонижения. Грунты однородные, представлены суглинком тугопластичным (g = 16,6 кН/м 3 , g s = 26,8 кН/м 3 , e = 0,7, j = 18°, с = 17 кПа).

На основании исходных данных определяем вес стен колодца:

G 0 = 3,14×(10,6 2 – 10,0 2)×30×25 =29108 кН.

Основное давление тиксотропного раствора в период погружения (3):

– на отметке 0,00 Р r – 0;

– на отметке 28,00 Р r = 15×28 = 420 кПа.

Дополнительное давление от сплошной вертикальной нагрузки q = 20 кПа (6):

P g = 20×tg 2 (45-18/2) = 10,5 кПа.

По полученным значениям строим эпюру давлений (рис. 2а). Усилия трения ножа колодца по грунту (7):

T u =1×2×3,14×10,8×2×77 = 10445 кН.

Усилия трения стен колодца в зоне тиксотропной рубашки (8):

T m =1×2×3,14×28×2 = 352 кН.

Суммарные усилия трения:

T = T u + T m =10445 + 352 = 10797 кН.

Усилия сопротивления грунта под банкеткой ножа (9):

R u = 3,14×(10,8 2 – 10,6 2) ×200 = 2688 кН.

Расчет погружения колодца выполним по формуле (10):

Погружение колодца обеспечено.

Основное давление грунта (1):

– на отметке 0.00 Р r,о = 0;

– на отметке 19.00 (уровень грунтовых вод):

– на отметке 30.00:

Гидростатическое давление грунтовых вод (5):

Дополнительное давление от сплошной вертикальной нагрузки = 20кПа (6):

По полученным значениям строим эпюру давлений (рис. 2 б).

Усилия трения ножа колодца по грунту (при расчете на всплытие) (7):

Усилия трения стен колодца по грунту после выполнения тампонажа щели цементно-песчаным раствором (при расчете на всплытие) (8):

Расчет колодца на всплытие выполним по формуле (11) с учетом веса днища

G g = 3.14×10.8 2 ×1.8×25 = 16481 кН.

Пригрузка колодца не требуется.

Дренаж и водоотлив.

Обводненность грунтов в процессе строительства вызывает технологические сложности. В процессе эксплуатации подземного сооружения подземные воды порождают архимедову силу взвешивания, которая при недостаточной нагрузке сверху может привести к всплытию сооружения. Кроме того, даже при самых надежных видах гидроизоляции вода проникает в подземное сооружение. Дренаж – это система дрен и фильтров, собирающих подземную воду и отводящих ее от котлована или сооружения, а водоотлив – откачивающая система (насосы, трубопроводы).

При пересеченном рельефе возможно устройство самотечного дренажа, если в доступной близости проходит канализационный коллектор на глубине, большей глубины заложения дренажных устройств. Во всех остальных случаях дренаж требует подъема уловленной воды на поверхность с помощью водоотлива. Поскольку водоотлив связан с потреблением электроэнергии, и в случае перерывов в ее подаче обводненность массива может быстро измениться, на эксплуатационный период обычно не предусматривается дренаж грунта с водоотливом, и сооружение рассчитывается на работу при естественном режиме подземных вод. В процессе строительства сооружения – напротив, как правило, стремятся к полному осушению котлована.

Щитовой способ.

Для разработки грунта широко применяют проходческие щиты, представляющие собой передвижную крепь, позволяющую под защитой разрабатывать грунт и возводить обделку. Формы поперечного сечения щитов – круговая, сводчатая, прямоугольная, трапецеидальная, эллиптическая и пр. По способу рыхления различают немеханизированные и механизированные щиты. В первом случае грунт разрабатывают вручную или с применением ручных инструментов, во втором все операции полностью механизированы и выполняются специальным рабочим органом. Проходческий щит кругового очертания представляет собой стальной цилиндр, состоящий из ножевого и опорного колец, а также хвостовой оболочки (см. рис. 1).

Ножевое кольцо подрезает грунт по контуру выработки и служит для защиты работающих в забое людей. При проходке в мягких – грунтах оно имеет уширенную верхнюю часть – аванбек, а в слабых – предохранительный козырек. Опорное кольцо вместе с ножевым – основная несущая конструкция щита. По периметру опорного кольца равномерно располагаются щитовые домкраты, служащие для передвижения агрегата. Хвостовая оболочка закрепляет контур выработки в месте возведения очередного кольца обделки.

Немеханизированные щиты оснащают горизонтальными и вертикальными перегородками, выдвижными платформами, а также забойными и платформенными домкратами.

Работы по щитовой проходке начинают с монтажа щитов и оснащения их необходимым оборудованием. В зависимости от вида подземного сооружения, глубины его заложения и инженерно-геологических условий щиты собирают в открытых выемках или котлованах, опускают целиком через шахтный ствол или внутри камеры либо монтируют в специальных подземных камерах.

Технология щитовой проходки зависит главным образом от типа щита, свойств грунта и вида обделки. При проходке немеханизированными щитами разработку, погрузку и транспортирование грунта производит так же, как при горном способе работ с применением стандартного горнопроходческого оборудования (бурильные молотки, погрузочные машины, вагонетки, электровозы и пр.). Успешно применяют проходческие щитовые комплексы КТ 1-5,6; ТЩБ-3, КМ-19, КТ-5,6Б2, которые состоят из щитового агрегата и оборудования для выполнения горнопроходческих, монтажных, гидроизоляционных и вспомогательных работ. Уровень механизации щитовых комплексов достигает 90...95 %, а скорости проходки тоннелей диаметром 5...6 м составляют 300...400 м в месяц и более.

Схемы механизации щитовых работ отличаются способами разработки грунта, крепления кровли и лба забоя, все остальные операции по погрузке и транспортированию грунта, по возведению и гидроизоляции обделки выполняют аналогично. Из забоя щита грунт поступает на магистральный транспортер-перегружатель, в конце которого помещается бункер с двумя затворами, что позволяет выгружать грунт в вагонетки. На мосту закреплены толкатели нижнего или верхнего действия, при помощи которых перемещаются отдельные вагонетки, тележки с блоками, пневмобетоноукладчики и т. п.

По мере разработки грунта выработку крепят арочной, анкерной, набрызг-бетонной, комбинированной временной контурной крепью (рис. 2). Арочную крепь устраивают из металлических прокатных профилей (двутавры, швеллеры, трубы), изогнутых по контуру выработки. Каждая арка состоит из двух или четырех элементов, соединяемых на болтах. Арки устанавливают с шагом 0,8...1,5 м, опирая на грунт через деревянные подкладки и раскрепляя деревянными или металлическими распорками. Пространство между арками затягивают досками, железобетонными плитами или гофрированным» стальными листами. В сводовой части устраивают сплошную затяжку, разбирая ее перед бетонированием. Крепь устраивают в виде анкеров, расположенных в пробуренных скважинах, «подвешивая» к ненарушенному массиву участок нарушенного грунта; применяют клиновые и распорные металлические анкеры с замковым устройством, железобетонные (набивные, нагнетательные и перфорированные), закрепляемые по всей глубине шпура, сталеполимерные анкеры, закрепляемые в шпурах эпоксидными или полиэфирными смолами и вступающие в совместную работу с окружающим массивом через 1...2 ч после установки.

В выработках большого размера используют предварительно напряженные анкеры, которые заделывают в д

Проблема создания и использования подземного пространства в крупнейших, крупных и больших городах приобретает все большую ак­туальность в связи с дефицитом свободных территорий, ускоренным развитием массового и индивидуального транспорта. Решение ее ак­туально в плотно застроенной центральной части, а также в отдель­ных общественно-транспортных комплексах массового посещения.

Использование подземного пространства не только облегчает условия пересадок, но и позволяет полностью или частично разгру­зить центральные районы от транспортных сооружений и устройств (гаражи и автостоянки, станции технического обслуживания и автоза­правочные, автобусные вокзалы), транзитных по отношению к центру автомобильных потоков и путей и станций скоростного рельсового транспорта (метрополитен).

Подземное пространство может быть "естественным", расположен­ным ниже поверхности земли, либо “искусственным”, образованным перекрытиями большой площади

Целесообразным является его применение для транспортных, подсобно-вспомогательных и технических сооружений, помещений и устройств, эксплуатация которых не связана с длительным пребыва­нием посетителей и персонала. Сюда можно отнести книгохранилища, автоматические телефонные станции, холодильники, ломбарды, овощехранилища, склады.

Из общественных сооружений с кратковременным пребыванием посетителей можно назвать кинотеатры, магазины, приемные пункты учреждений бытового обслуживания, библиотеки, архивы, музеи. В ряде случаев транспортные сооружение и узлы в центрах крупных городов действуют в тесной взаимосвязи с учреждениями культурно-бытового обслуживания. Возникают так называемые общественно-транспортные центры.

Принципы вертикального зонирования подземного пространства в городе могут быть сформулированы так:

· наиболее близкие к поверхности земли уровни до отметки -4 м отводятся для пешеходов, непрерывного пассажирского транспорта, движущихся тротуаров, автостоянок, местных разводящих инженерных сетей;

· уровни на отметках от -4 до -15 (-20) м предназначаются для трасс метрополитена или другого рельсового транспорта и авто­транспортных тоннелей мелкого заложения, для многоуровневых под­земных гаражей, складов, резервуаров и магистральных коллекторов;

· уровни на отметках от -15 до -40 м отводятся для трасс
рельсового транспорта глубокого заложения, включая городские железнодорожные диаметры.

В зарубежной практике строительства делового центра вне исторического ядра города интересен опыт французских градостроите­лей. Новый крупнейший административно-деловой и общественный центр в районе площади Дефанс (в Париже) находится на продолжении главной городской магистрали, за пределами исторически сложившегося цен­тра города.



Большое внимание при его проектировании было уделено органи­зации путей движения пешеходов и транспорта. Так, весь ансамбль новых сооружений имеет многоярусную композицию и возвышается на гигантской платформе- подиуме, поднятой над поверхностью земля на 15-33 м, протяженностью до 1 км. При этом удачно используется рельеф местности. Таким образом создано до 4-5 этажей подземных и полуподземных уровней.

Главным уровнем пешеходного движения является поднятая над землей и расположенная по верху платформы широкая эспланада, по периметру которой - преимущественно под землей и в нескольких ярусах - "идет транспорт. В четвертом подземном уровне. Проложены экспрессная и местная линии метрополитена объединенные станци­ей. Третий отведен для скоростного транзитного движения автомоби­лей по направлению Париж-Нормандия. Во втором проложены маршруты автобусов дальнего и местного сообщения и сооружен подземный ав­тобусный вокзал. Первый отведен для подъездов к зданиям и выездов на периферийные дороги одностороннего движения с развитыми примы­каниями-развязками. Примерно в том же уровне проходит железная дорога Париж-Версаль, огибающая город с севера и запада.

Проект реконструкции центра Парижа основан на другом. Под садом Тюильри и двором Лувра было предложено построить крупный подземный комплекс сооружений; Такое решение позволяет почти полностью освободить от автомобильного движения район Тюильри и ул. Риволи, набережную р.Сены от Лувра до площади Согласия, а также построить подземные гаражи-стоянки большой вместимости..В ком­плекс подземных сооружений входят гаражи, стоянки, подземные об­щественные сооружения (театры, кинотеатры, кочкой: клуб, закусоч­ные с самообслуживанием, ресторан, торговые галереи/ подсобные и выставочные помещения музея). Устройство подземных скоростных автомагистралей способствует заметкой разгрузке поверхности земли от транспорта.

Проект реконструкции г.Филадельфии предусматривает строительство в центральных районах этого крупного промышленного, торгово-финансового к культурного центра США при сохранении насколь­ко это возможно, исторически сложившегося облика города. Наиболее интересной является реконструкция старейшей его части. Здесь со­здается один из первых в мировой практике многоуровневый общест­венно-транспортный комплекс, в котором, согласно проекту, будут сосредоточены предприятия и учреждения общегородского значения, посещаемые не только жителями города, но и приезжими. Поэтому об­щественный центр должен обслуживаться несколькими видами наземно­го и подземного транспорта.

Главной особенностью плана является максимальное разделение путей движения транспорта и пешеходов. Транспортное движение ор­ганизуется в нескольких уровнях с широким использованием подзем­ного пространства. В нижнем, втором от поверхности, подземном уровне проходят линии метрополитена и скоростная железная дорога мелкого заложения (25 станций). Верхний отведен для пешеходов. Он имеет пешеходные переходы и заглубленные ниже уровня земли световые скверы-дворики со входами в магазины, рестораны, бары и другие торговые предприятия. Этот прием обеспечивает естественное освещение всех расположенных ниже уровня земли учреждений обслу­живания и самих подземных переходов, облегчает условия ориентации, В уровне земли размещается ярус основных торговых помещений, а также так называемый "грузовой" вокзал. Еще выше, над пешеходно- торговым ярусом в уровне второго надземного этажа, запроектирован пассажирский автобусный вокзал. Вверху построены гаражи, техничес­кие и вспомогательные помещения. Все пешеходные уровни связаны эскалаторами и механическими подъемниками. Подъезды легковых ав­томобилей проектируются по всему периметру центра, в уровне городских улиц. Проектом предусматривался 9 крупных автостоянок.

Основные из них расположены у кольцевой, автомобильной скоростной дороги, обслуживающей центр. Въезды и выезды обеспечиваются корот­кими специальными тоннелями, а также системами распределительных улиц и проездов местного движения.

Интересен проект реконструкции центральной пасти крупнейшего города Калифорнии - Лос-Аяджелеса. Новый компактный многоуровне­вый центр должен обслуживаться несколькими видами транспорта. Все движение организовано в четырех уровнях. В нижнем подземном про­ходит линия скоростной подземной дороги мелкого заложения. В рай­оне запроектированы две станции экспресс- метрополитена. В верхнем, подземном располагаются пешеходные переходы, связанные с подземны­ми вестибюлями обеих станций. Вдоль улиц проектируется строитель­ство подземного транспортного тоннеля протяженностью около 500 м. Под площадью Першинг-сквер сооружен трехэтажный гараж. Главной особенностью плана реконструкции является создание пешеходных меж­квартальных бульваров в двух уровнях - улицы и поднятых на высоту 5 м над землей бульваров-эстакад, которые имеют большую протяжен­ность, до 7 км, и проходят не только по основным улицам, но и внутри кварталов, обеспечивая удобный и быстрый доступ в магазины рестораны, центральный автобусный вокзал, общественные и другие здания. Все уровни пешеходного движения связываются лестницами, пандусами, эскалаторами, исключительно по которым осуществляется подъем пассажиров.

Мощная и разветвленная система подземных пешеходных и транспортных коммуникаций является составной частью реконструкций центра Монреаля (Канада), предусматривающей в центральном районе города возведение крупного комплекса торговых, общественных и обслуживающих учреждений для населения самого Монреаля, а также тяготеющих к нему малых-городов и населенных пунктов; Новый центр создается на месте старой застройки. На его территории - универсальные магазины, гостиницы, кинотеатры, административные здания, рестораны, многоярусные подземные гаражи. По нему проходят глав­ные транспортные маршруты города, три линии метрополитена подземные участки скоростных автомагистралей и две железнодорожные коммуникации. Тем самым создается хорошая связь общественно-тор­гового центра со всеми районами города и пригородами.

Все здания имеют несколько подземных уровней. Верхний представляет собой систему входов в метро, вокзалы и пешеходных переходов, непосредственно связанных со всеми зданиями, автостоянками и гаражами. В переходах центра Монреаля можно встретить многочис­ленные учреждения торговли, фронт витрин которых простирается на многие километры. Таким образом, создается развитый в длину подземный торговый центр нового типа. Для освещения переходов, кафе и магазинов, расположенных ниже уровня земли, проектируются свётовые озелененные дворики и площади с бассейнами и фонтанами. Уровни пешеходного движения соединены эскалаторами и лифтами. Все здания в перспективе будут иметь общий многоуровневый подиум с подземной" нижней частью, В наиболее крупном сооружении - двенадцать подзем­ных ярусов.

Иной подход использован при реконструкции старого центра Хель­синки. В основе - взаимосвязь новых инженерно-транспортных соору­жений с существующей и проектируемой застройкой, городским пейза­жем. Новый общественный центр будет связан с северной и южной час­тями города мощной восьми полосной автомобильной трассой, которая пройдет около железной дороги и частично над ней. Кроме того, на­мечается реконструкция главной существующей магистрали, пропуск­ная способность которой будет увеличена, устройство развязок движения в разных уровнях с подземными тоннелями. Под треугольной площадью проектируется строительство многоярусного сооружения. В подземных уровнях разместятся автостоянки и гаражи, тоннельные пе­реходы, связанные с торговыми и обслуживающими учреждениями. Для организаций непрерывного движения транспорта все магистрали в мес­тах пересечения имеют развязки с кривыми больших радиусов.

Другая часть центра включает в себя административно-деловые здания. Под ними устраивается подземная трехъярусная площадь, час­тично открытая. Наверху проходят скоростные магистрали, ниже расположены автостоянки. Сложная система тоннелей, мостиков и въездных рамп связывает все подземные уровни с поверхностью. На отдельном участке (ниже уровня городских- улиц местного движения) запроектирован центральный автобусный вокзал. Эффективно исполь­зуется подземное пространство в проекте делового центра на Вокзаль­ной площади. Семиэтажные конторские корпуса со всех сторон замы­кают обширный паркинг, приподнятый на высоту второго этажа. Сис­тема торговых помещений в первом этаже и цоколе связывается пас­сажами, соединяющими центр с вокзалом и остановками общественного транспорта.

В Москве одним из первых градостроительных комплексов с использованием подземного пространства явился ансамбль зданий и сооружений на проспекта Калинина. Сооружения и помещения, находящиеся на южной стороне проспекта, занимают два этажа, на которых сосредоточены все складские, подсобно-вспомогательные и инженерно-технические службы, объединенные общим транспортным тоннелем дли­ной 900 м, шириной 9м.Для въездов и выездов удачно приспособле­ны перепады рельефа. Кроме служебного тоннеля с разгрузочными площадками и двухэтажными складскими, техническими и подсобными помещениями, в первом подземном уровне находятся банкетный зал ресторана "Арбат", демонстрационные залы "Дома одежды", большой пивной зал. Под пешеходной зоной южной стороны проспекта заплани­рован трехъярусный подземный гараж-стоянка.

Комплекс подземных переходов торгового центра выстроен в многолюдной центральной части Еревана, на пересечении трех напря­женных транспортных артерий и кольцевого бульвара. Такое решение возникло в связи с необходимостью обеспечения безопасного движения. Создано единое урбанизированное подземное пространство с раз­мещением объектов торговли, общественного питания, культурно-бы­тового обслуживания.

Введение

В последние годы в большинстве крупных городов мира отмечается повышенный интерес к широкому использованию подземного пространства.

Он вызван усилением урбанизации, стремительным развитием наземного транспорта, дефицитом городской территории и рядом других причин. Интенсивное освоение подземных пространств в городах является непременным условием развития современного градостроительства, которое предопределяет возможность эффективного использования городской территории, улучшения состояния внешней среды, сохранения архитектурно-пространственной целостности исторически сложившихся зон города, а также решения комплекса многих других, в том числе социально-экономических задач.

Степень использования подземного пространства, техника и технология ведения работ зависят от величины города, характера и содержания исторически сложившейся и перспективной застройки, концентрации дневного населения в различных частях города, расчетного количества автомобилей, природно-климатических, инженерно-геологических и других условий.

Принципы использования подземного пространства городов: российский и зарубежный опыт

Освоение подземного пространства наиболее актуально в центральных, отличающихся плотной застройкой и наиболее посещаемых районах города. Общественные центры города, включают: центральную зону города, главные магистрали, крупные общественно-транспортные узлы. Эти зоны являются местами концентрации «дневного» населения, обслуживание которого должно быть максимально приближено к местам его нахождения. В центральной зоне города наличие ценного историко-архитектурного наследия, целостности градостроительных ансамблей прошлого не позволяет развивать в достаточной степени административно-деловые, культурно-зрелищные и торговые функции, а также расширять уличную сеть и площади озеленения открытых пространств. Поэтому центральная часть города является местом наиболее интенсивного использования подземного пространства для размещения данных объектов. Приближения предприятий торговли и общественного питания, зрелищных и коммунально-бытовых объектов к участкам концентрации населения увеличивает их посещаемость, повышает их покупательную способность и рентабельность эксплуатации.

Такие предприятия располагаются:

  • - под центральными улицами (в Киеве, в Белграде, в Токио)
  • - под площадями и пересечениями центральных улиц (в Вене, Беллария, Бабенбергени Шоттентор, в Мюнхене, в Москве)
  • - в системе общественно-торговых центров (в Стокгольме, в Филадельфии, в Монреале)

В столице Поднебесной г. Пекине к 2020 г. Китайцы планируют построить подземный город. Площадь освоенной территории составит порядка 90 млн м2. На территории города планируют создать несколько финансовых районов, в которых размесятся банки и другие экономические структуры, а также транспортные развязки, крупные торговые центры. По словам архитекторов, ежегодно планируется вводить в строй до 10 млн м2.

В мировой практике перечень подземных и полуподземных сооружений весьма обширен и включает театральные, концертные и выставочные залы (театр « Латерна магика» и зал «Альгамбра» в Праге, консерватория и Центр искусств и ремесел в Париже, музей современного искусства в Нью-Йорке), торговые залы универсальных магазинов и рынков (Галери-Лафайет в Париже, Булл-Ринг в Бирмингеме), торгово-пешеходные комплексы и улицы-пассажи (Хельсинки, Вена, Осака), железнодорожные вокзалы (Варшава, Брюссель, Копенгаген, Неаполь, Сидней, Монреаль), автобусные вокзалы (Чикаго, Нью-Йорк, Лос-Анджелес) и аэровокзалы (в Париже, в Риме, в Брюсселе, в Вашингтоне), метрополитены действующие в более чем 150 городах мира.

Сейчас самой протяженной в мире подземной транспортной сетью является метрополитен в г. Лондоне. На сегодняшний день подземка насчитывает 275 станций, протяженность путей - 408 километров, пассажиропоток лондонского метро составляет 3 млн человек. К 2020 г. Совокупная длина веток пекинского метро в столице по планам китайских метростроителей составит 561 км, в городе будет действовать 19 веток метро.

В связи с широким использованием подземного пространства в крупных городах для транспортных целей многих проектировщиков возникает мысль о целесообразности сооружения целых подземных комплексов многоцелевого назначения, в которых можно было б разместить не только транспортное сооружения, но и все помещения для обслуживания пассажиров по пути их следования.

В последние годы транспортные сооружения все чаще решаются в комплексе с учреждениями обслуживания и торговли. Примерами могут служить автовокзал в Финляндии в комплексе с торговым центром, автовокзал в Голландии, включенный в состав торгового центра, автовокзал в Гамбурге, кооперированный с торговым центром, общественно-транспортные центры в Токио, Мюнхене и других городах.

Во многих городах США создан ряд крупных торговых центров, обеспечивающих предельную концентрацию обслуживания. В состав таких торговых центров обычно включаются продовольственные и промтоварные магазины, кафе, рестораны и другие общественные сооружения, вплоть до концертных залов, катков с искусственным льдом и плавательных бассейнов. Например, в торговом центре Ля-Рошель площадью 44 га размещаются железнодорожная и автобусная станции, гараж на 5 тысяч машин, театр, зал универсального назначения, гостиница. площадь торговых помещений - 72 тыс м2.

Для транспортного обслуживания в новых общественных центрах создается, как правило, несколько подземных уровней, используемых для движения рельсового подземного транспорта, пешеходных переходов, подземных стоянок и гаражей. Обычно на самом нижнем подземном уровне находится станция метрополитена и подземные участки городских подземных дорог; выше располагаются подземные тоннели для автотранспорта и подземные сооружения для пешеходов.

Для новых общественных центров Парижа, Монреаля, Хельсинки, Лос-Анджелеса, Лондона и других городов проектируются подземные участки магистралей, нередко пересекающие весь город в нескольких ярусах.

Несколько лет назад законченно строительство общественного центра в Париже.

Новый центр включает общественные, административные и жилые здания. В нем полностью разделены пути движения пешеходов и транспорта. Комплекс сооружения имеет многоярусную композицию с четырьмя-пятью подземными этажами. Все виды городского транспорта в новом общественном центре сосредоточены в подземном пространстве.

Основная транзитная автомагистраль Париж-Нормандия проходит в пределах общественного под землей, по ней пройдут основные автобусные маршруты и экспрессная линия метрополитена, связывающая новый центр со старыми центральными районами города.

На нижнем (четвертом от поверхности) подземном уровне проложена экспрессная линия метрополитена со станцией, расположенной около основных общественных сооружений комплекса. Следующий (третий от поверхности) подземный уровень отведен для движения автотранспорта дальнего сообщения. Еще выше проходят автобусные линии местного сообщения с автовокзалом. Самый верхний подземный уровень занят подъездами к зданиям, соединенными с периферийными трассами с односторонним движением с развязками в трех пунктах.

В Финляндии осуществляется проект планировки и застройки новых 3-х уровневого общественного центра в Хельсинки. Он запроектирован на берегу залива Тееле на участке, ограниченном железнодорожным вокзалом и зданием парламента. Для полного разделения движения пешеходов и транспорта на всех автомагистралях в местах пересечения предусмотрены подземные развязки. В подземном пространстве разместятся автостоянки и гаражи для этого района, будут построены переходы, связанные с подземными автостоянками, торговыми и обслуживающими учреждениями.

Для обслуживания населения Монреаля, а также близлежащих городов и пригородов в даунтауне создается крупный комплекс торговых, общественных и транспортных сооружений. Новый общественно-транспортный центр города сооружается на месте старой застройки.

В состав комплекса входят три крупных универсальных магазина, 4 отеля, 8 кинотеатров, 5 высотных административных зданий, 30 ресторанов, 20 крупных специализированных магазинов и крытых рынков, подземные многоярусные автостоянки на 9 тыс. машино-мест. Полезная площадь расположенных в центре магазинов, ресторанов, кинотеатров, книжных магазинов и пешеходных галерей превысит 1 млн. кв. футов (90 тыс. м 2).

Через новый центр проходят главные транспортные артерии города: три подземные линии метрополитена, подземные автомагистрали и две железнодорожные линии (Национальная и Тихоокеанская). Подземная скоростная автомагистраль должна соединять центральную зону города с Трансканадской автострадой. К ней должны примыкать пешеходно-торговые переходы протяженностью 6, 4 км, связанные с подземными автомобильными стоянками, станциями метрополитена, служебными подъездами для грузовых автомобилей и двумя центральными железнодорожными вокзалами.

В Москве на месте гостиница «Россия» будет построен многофункциональный комплекс с гостиницами, киноконцертным залом, залом для камерной музыки, с предприятиями торговли и общественного питания.

Планируется максимально использовать подземное пространство - будут оборудованы автостоянки более чем на тысячу мест. В подземной части комплекса будет воссоздан облик улиц Москвы, системой подземных переходов свяжут Красную площадь и Манежный комплекс на Охотном ряду.

В мировой практике быстрыми темпами идет развитие строительства подземных паркингов и гаражей. Преимущества подземных гаражей и паркингов очевидны. Подземные сооружения дает существенную экономию территории (или практически ее совсем не требуют, за исключением выездного устройства), поскольку могут быть размещены под существующими парками, скверами, площадями, зданиями т. д. Кроме того, для подземных (полуподземных) гаражей могут быть использованы территории, которые не удалось использовать для других целей (овраги, участки с большим уклоном, разного рода выемки, небольшие карьеры и т. п.)

В функциональном отношении подземные гаражи способствуют разделению транспортного и пешеходного движения, общей разгрузке наземного пространства. Например, в г. Москве осуществляется несколько таких проектов. На подземном пространстве под площадью Тверской заставы ведется строительство транспортной развязки с многофункциональным комплексом общей площадью 107387, 5 кв. м., включающим и многоярусный подземный гараж - стоянку на 731 машино-мест, общей площадью 27715 кв. м. Трехуровневый паркинг на 1000 машино-мест будет построен и под Пушкинской площадью. Дополнительно там будут выстроены сувенирные магазины, кафе и небольшой выставочный зал.

Заслуживает внимание стремление к созданию целостной системы подземных сооружений, обслуживающих центральную зону города.

Во многих крупнейших городах мира при реконструкции и строительстве общественных центров основное движение пешеходов проектируется под улицами и площадями на глубине 3, 5м. по подземным пешеходным улицам-переходам с распределительными подземными залами, имеющими световые озелененные колодцы (для освещения подземных помещений). На одном уровне с этими пешеходными подземными коммуникациями сооружаются подземные торговые культурно- бытовые, зрелищные помещения спортивные объекты кафе и рестораны со входами, ориентированными непосредственно на пешеходный подземный уровень. Длина подземных пешеходных коммуникаций измеряется сотнями и тысячами метров.

Современный уровень развития подземного строительства в мегаполисах позволяет решать большинство задач по экономически эффективному и экологически безопасному размещению социально значимых объектов комплексно и оперативно. Годовые темпы сооружения подземных объектов в общем объеме строительства находятся в достаточно большом диапазоне: от 5-8 % в городах, только осваивающих эту область хозяйственной деятельности (например, в Москве), до 25-30% в крупнейших мегаполисах с большим опытом в данной сфере (например, в Париже, Токио, Лондоне).

Отечественная и зарубежная практика использования подземного пространства свидетельствует о большом значении подземного строительства в городах. Масштабы и виды размещаемых под землей городских объектов должны обусловливаться социальными, экономическим и градостроительными соображениями, исходя из необходимости создания наилучших условий обслуживания населения, а также обеспечения наиболее рационального использования городских территорий, повышения эффективности капитальных вложений в градостроительство.