Домой / Проверка личности Продавца квартиры / Методы исследования нервной системы. Современные методы исследования центральной нервной системы

Методы исследования нервной системы. Современные методы исследования центральной нервной системы

Основным принципом функционирования ЦНС является процесс регуляции, управления физиологическими функциями, которые направлены на поддержание постоянства свойств и состава внутренней среды организма. ЦНС обеспечивает оптимальные взаимоотношения организма с окружающей средой, устойчивость, целостность, оптимальный уровень жизнедеятельности организма.

Различают два основных вида регуляции: гуморальный и нервный.

Гуморальный процесс управления предусматривает изменение физиологической активности организма под влиянием химических веществ, которые доставляются жидкими средами организма. Источником передачи информации являются химические вещества – утилизоны, продукты метаболизма (углекислый газ, глюкоза, жирные кислоты), информоны, гормоны желез внутренней секреции, местные или тканевые гормоны.

Нервный процесс регуляции предусматривает управление изменения физиологических функций по нервным волокнам при помощи потенциала возбуждения под влиянием передачи информации.

Характерные особенности:

1) является более поздним продуктом эволюции;

2) обеспечивает быструю регуляцию;

3) имеет точного адресата воздействия;

4) осуществляет экономичный способ регуляции;

5) обеспечивает высокую надежность передачи информации.

В организме нервный и гуморальный механизмы работают как единая система нейрогуморального управления. Это комбинированная форма, где одновременно используются два механизма управления, они взаимосвязаны и взаимообусловлены.

Нервная система представляет собой совокупность нервных клеток, или нейронов.

По локализации различают:

1) центральный отдел – головной и спинной мозг;

2) периферический – отростки нервных клеток головного и спинного мозга.

По функциональным особенностям различают:

1) соматический отдел, регулирующий двигательную активность;

2) вегетативный, регулирующий деятельность внутренних органов, желез внутренней секреции, сосудов, трофическую иннервацию мышц и самой ЦНС.

Функции нервной системы:

1) интегративно-коордиационная функция. Обеспечивает функции различных органов и физиологических систем, согласует их деятельность между собой;

2) обеспечение тесных связей организма человека с окружающей средой на биологическом и социальном уровнях;

3) регуляция уровня обменных процессов в различных органах и тканях, а также в самой себе;

4) обеспечение психической деятельности высшимие отделами ЦНС.

2. Нейрон. Оособенности строения, значение, виды

Структурной и функциональной единицей нервной ткани является нервная клетка – нейрон .

Нейрон – специализированная клетка, которая способна принимать, кодировать, передавать и хранить информацию, устанавливать контакты с другими нейронами, организовывать ответную реакцию организма на раздражение.

Функционально в нейроне выделяют:

1) воспринимающую часть (дендриты и мембрану сомы нейрона);

2) интегративную часть (сому с аксоновым холмиком);

3) передающую часть (аксонный холмик с аксоном).

Воспринимающая часть.

Дендриты – основное воспринимающее поле нейрона. Мембрана дендрита способна реагировать на медиаторы. Нейрон имеет несколько ветвящихся дендритов. Это объясняется тем, что нейрон как информационное образование должен иметь большое количество входов. Через специализированные контакты информация поступает от одного нейрона к другому. Эти контакты называются «шипики».

Мембрана сомы нейрона имеет толщину 6 нм и состоит из двух слоев липидных молекул. Гидрофильные концы этих молекул обращены в сторону водной фазы: один слой молекул обращен внутрь, другой – наружу. Гидрофильные концы повернуты друг к другу – внутрь мембраны. В двойной липидный слой мембраны встроены белки, которые выполняют несколько функций:

1) белки-насосы – перемещают в клетке ионы и молекулы против градиента концентрации;

2) белки, встроенные в каналы, обеспечивают избирательную проницаемость мембраны;

3) рецепторные белки осуществляют распознавание нужных молекул и их фиксацию на мембране;

4) ферменты облегчают протекание химической реакции на поверхности нейрона.

В некоторых случаях один и тот же белок может выполнять функции как рецептора, фермента, так и насоса.

Интегративная часть.

Аксоновый холмик – место выхода аксона из нейрона.

Сома нейрона (тело нейрона) выполняет наряду с информационной и трофическую функцию относительно своих отростков и синапсов. Сома обеспечивает рост дендритов и аксонов. Сома нейрона заключена в многослойную мембрану, которая обеспечивает формирование и распространение электротонического потенциала к аксонному холмику.

Передающая часть.

Аксон – вырост цитоплазмы, приспособленный для проведения информации, которая собирается дендритами и перерабатывается в нейроне. Аксон дендритной клетки имеет постоянный диаметр и покрыт миелиновой оболочкой, которая образована из глии, у аксона разветвленные окончания, в которых находятся митохондрии и секреторные образования.

Функции нейронов:

1) генерализация нервного импульса;

2) получение, хранение и передача информации;

3) способность суммировать возбуждающие и тормозящие сигналы (интегративная функция).

Виды нейронов:

1) по локализации:

а) центральные (головной и спинной мозг);

б) периферические (мозговые ганглии, черепные нервы);

2) в зависимости от функции:

а) афферентные (чувствительные), несущие информацию от рецепторов в ЦНС;

б) вставочные (коннекторные), в элементарном случае обеспечивающие связь между афферентным и эфферентным нейронами;

в) эфферентные:

– двигательные – передние рога спинного мозга;

– секреторные – боковые рога спинного мозга;

3) в зависимости от функций:

а) возбуждающие;

б) тормозящие;

4) в зависимости от биохимических особенностей, от природы медиатора;

5) в зависимости от качества раздражителя, который воспринимается нейроном:

а) мономодальный;

б) полимодальные.

3. Рефлекторная дуга, ее компоненты, виды, функции

Деятельность организма – закономерная рефлекторная реакция на стимул. Рефлекс – реакция организма на раздражение рецепторов, которая осуществляется с участием ЦНС. Структурной основой рефлекса является рефлекторная дуга.

Рефлекторная дуга – последовательно соединенная цепочка нервных клеток, которая обеспечивает осуществление реакции, ответа на раздражение.

Рефлекторная дуга состоит из шести компонентов: рецепторов, афферентного (чувствительного) пути, рефлекторного центра, эфферентного (двигательного, секреторного) пути, эффектора (рабочего органа), обратной связи.

Рефлекторные дуги могут быть двух видов:

1) простые – моносинаптические рефлекторные дуги (рефлекторная дуга сухожильного рефлекса), состоящие из 2 нейронов (рецепторного (афферентного) и эффекторного), между ними имеется 1 синапс;

2) сложные – полисинаптические рефлекторные дуги. В их состав входят 3 нейрона (их может быть и больше) – рецепторный, один или несколько вставочных и эффекторный.

Представление о рефлекторной дуге как о целесообразном ответе организма диктует необходимость дополнить рефлекторную дугу еще одним звеном – петлей обратной связи. Этот компонент устанавливает связь между реализованным результатом рефлекторной реакции и нервным центром, который выдает исполнительные команды. При помощи этого компонента происходит трансформация открытой рефлекторной дуги в закрытую.

Особенности простой моносинаптической рефлекторной дуги:

1) территориально сближенные рецептор и эффектор;

2) рефлекторная дуга двухнейронная, моносинаптическая;

3) нервные волокна группы А? (70-120 м/с);

4) короткое время рефлекса;

5) мышцы, сокращающиеся по типу одиночного мышечного сокращения.

Особенности сложной моносинаптической рефлекторной дуги:

1) территориально разобщенные рецептор и эффектор;

2) рецепторная дуга трехнейронная (может быть и больше нейронов);

3) наличие нервных волокон группы С и В;

4) сокращение мышц по типу тетануса.

Особенности вегетативного рефлекса:

1) вставочный нейрон находится в боковых рогах;

2) от боковых рогов начинается преганглионарный нервный путь, после ганглия – постганглионарный;

3) эфферентный путь рефлекса вегетативной нервной дуги прерывается вегетативным ганглием, в котором лежит эфферентный нейрон.

Отличие симпатической нервной дуги от парасимпатической: у симпатической нервной дуги преганглионарный путь короткий, так как вегетативный ганглий лежит ближе к спинному мозгу, а постганглионарный путь длинный.

У парасимпатической дуги все наоборот: преганглионарный путь длинный, так как ганглий лежит близко к органу или в самом органе, а постганглионарный путь короткий.

4. Функциональные системы организма

Функциональная система – временное функциональное объединение нервных центров различных органов и систем организма для достижения конечного полезного результата.

Полезный результат – самообразующий фактор нервной системы. Результат действия представляет собой жизненно важный адаптивный показатель, который необходим для нормального функционирования организма.

Существует несколько групп конечных полезных результатов:

1) метаболическая – следствие обменных процессов на молекулярном уровне, которые создают необходимые для жизни вещества и конечные продукты;

2) гомеостатическая – постоянство показателей состояния и состава сред организма;

3) поведенческая – результат биологической потребности (половой, пищевой, питьевой);

4) социальная – удовлетворение социальных и духовных потребностей.

В состав функциональной системы включаются различные органы и системы, каждый из которых принимает активное участие в достижении полезного результата.

Функциональная система, по П. К. Анохину, включает в себя пять основных компонентов:

1) полезный приспособительный результат – то, ради чего создается функциональная система;

2) аппарат контроля (акцептор результата) – группу нервных клеток, в которых формируется модель будущего результата;

3) обратную афферентацию (поставляет информацию от рецептора в центральное звено функциональной системы) – вторичные афферентные нервные импульсы, которые идут в акцептор результата действия для оценки конечного результата;

4) аппарат управления (центральное звено) – функциональное объединение нервных центров с эндокринной системой;

5) исполнительные компоненты (аппарат реакции) – это органы и физиологические системы организма (вегетативная, эндокринные, соматические). Состоит из четырех компонентов:

а) внутренних органов;

б) желез внутренней секреции;

в) скелетных мышц;

г) поведенческих реакций.

Свойства функциональной системы:

1) динамичность. В функциональную систему могут включаться дополнительные органы и системы, что зависит от сложности сложившейся ситуации;

2) способность к саморегуляции. При отклонении регулируемой величины или конечного полезного результата от оптимальной величины происходит ряд реакций самопроизвольного комплекса, что возвращает показатели на оптимальный уровень. Саморегуляция осуществляется при наличии обратной связи.

В организме работает одновременно несколько функциональных систем. Они находятся в непрерывном взаимодействии, которое подчиняется определенным принципам:

1) принципу системы генеза. Происходят избирательное созревание и эволюция функциональных систем (функциональные системы кровообращения, дыхания, питания, созревают и развиваются раньше других);

2) принципу многосвязного взаимодействия. Происходит обобщение деятельности различных функциональных систем, направленное на достижение многокомпонентного результата (параметры гомеостаза);

3) принципу иерархии. Функциональные системы выстраиваются в определенный ряд в соответствии со своей значимостью (функциональная система целостности ткани, функциональная система питания, функциональная система воспроизведения и т. д.);

4) принципу последовательного динамического взаимодействия. Осуществляется четкая последовательность смены деятельности одной функциональной системы другой.

5. Координационная деятельность ЦНС

Координационная деятельность (КД) ЦНС представляет собой согласованную работу нейронов ЦНС, основанную на взаимодействии нейронов между собой.

Функции КД:

1) обеспечивает четкое выполнение определенных функций, рефлексов;

2) обеспечивает последовательное включение в работу различных нервных центров для обеспечения сложных форм деятельности;

3) обеспечивает согласованную работу различных нервных центров (при акте глотания в момент глотания задерживается дыхание, при возбуждении центра глотания тормозится центр дыхания).

Основные принципы КД ЦНС и их нейронные механизмы.

1. Принцип иррадиации (распространения). При возбуждении небольших групп нейронов возбуждение распространяется на значительное количество нейронов. Иррадиация объясняется:

1) наличием ветвистых окончаний аксонов и дендритов, за счет разветвлений импульсы распространяются на большое количество нейронов;

2) наличием вставочных нейронов в ЦНС, которые обеспечивают передачу импульсов от клетки к клетке. Иррадиация имеет границы, которая обеспечивается тормозным нейроном.

2. Принцип конвергенции. При возбуждении большого количества нейронов возбуждение может сходиться к одной группе нервных клеток.

3. Принцип реципрокности – согласованная работа нервных центров, особенно у противоположных рефлексов (сгибание, разгибание и т. д.).

4. Принцип доминанты. Доминанта – господствующий очаг возбуждения в ЦНС в данный момент. Это очаг стойкого, неколеблющегося, нераспространяющегося возбуждения. Он имеет определенные свойства: подавляет активность других нервных центров, имеет повышенную возбудимость, притягивает нервные импульсы из других очагов, суммирует нервные импульсы. Очаги доминанты бывают двух видов: экзогенного происхождения (вызванные факторами внешней среды) и эндогенными (вызванные факторами внутренней среды). Доминанта лежит в основе формирования условного рефлекса.

5. Принцип обратной связи. Обратная связь – поток импульсов в нервную систему, который информирует ЦНС о том, как осуществляется ответная реакция, достаточна она или нет. Различают два вида обратной связи:

1) положительная обратная связь, вызывающая усиление ответной реакции со стороны нервной системы. Лежит в основе порочного круга, который приводит к развитию заболеваний;

2) отрицательная обратная связь, снижающая активность нейронов ЦНС и ответную реакцию. Лежит в основе саморегуляции.

6. Принцип субординации. В ЦНС существует определенная подчиненность отделов друг другу, высшим отделом является кора головного мозга.

7. Принцип взаимодействия процессов возбуждения и торможения. ЦНС координирует процессы возбуждения и торможения:

оба процесса способны к конвергенции, процесс возбуждения и в меньшей степени торможения способны к иррадиации. Торможение и возбуждение связаны индукционными взаимоотношениями. Процесс возбуждения индуцирует торможение, и наоборот. Различаются два вида индукции:

1) последовательная. Процесс возбуждения и торможения сменяют друг друга по времени;

2) взаимная. Одновременно существует два процесса – возбуждения и торможения. Взаимная индукция осуществляется путем положительной и отрицательной взаимной индукции: если в группе нейронов возникает торможение, то вокруг него возникают очаги возбуждения (положительная взаимная индукция), и наоборот.

По определению И. П. Павлова, возбуждение и торможение – это две стороны одного и того же процесса. Координационная деятельность ЦНС обеспечивает четкое взаимодействие между отдельными нервными клетками и отдельными группами нервных клеток. Выделяют три уровня интеграции.

Первый уровень обеспечивается за счет того, что на теле одного нейрона могут сходиться импульсы от разных нейронов, в результате происходит или суммирование, или снижение возбуждения.

Второй уровень обеспечивает взаимодействиями между отдельными группами клеток.

Третий уровень обеспечивается клетками коры головного мозга, которые способствуют более совершенному уровню приспособления деятельности ЦНС к потребностям организма.

6. Виды торможения, взаимодействие процессов возбуждения и торможения в ЦНС. Опыт И. М. Сеченова

Торможение – активный процесс, возникающий при действии раздражителей на ткань, проявляется в подавлении другого возбуждения, функционального отправления ткани нет.

Торможение может развиваться только в форме локального ответа.

Выделяют два типа торможения:

1) первичное. Для его возникновения необходимо наличие специальных тормозных нейронов. Торможение возникает первично без предшествующего возбуждения под воздействием тормозного медиатора. Различают два вида первичного торможения:

а) пресинаптическое в аксо-аксональном синапсе;

б) постсинаптическое в аксодендрическом синапсе.

2) вторичное. Не требует специальных тормозных структур, возникает в результате изменения функциональной активности обычных возбудимых структур, всегда связано с процессом возбуждения. Виды вторичного торможения:

а) запредельное, возникающее при большом потоке информации, поступающей в клетку. Поток информации лежит за пределами работоспособности нейрона;

б) пессимальное, возникающее при высокой частоте раздражения;

в) парабиотическое, возникающее при сильно и длительно действующем раздражении;

г) торможение вслед за возбуждением, возникающее вследствие снижения функционального состояния нейронов после возбуждения;

д) торможение по принципу отрицательной индукции;

е) торможение условных рефлексов.

Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выраженными. Возбуждение непременно сменяется торможением, и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.

Торможение лежит в основе координации движений, обеспечивает защиту центральных нейронов от перевозбуждения. Торможение в ЦНС может возникать при одновременном поступлении в спинной мозг нервных импульсов различной силы с нескольких раздражителей. Более сильное раздражение тормозит рефлексы, которые должны были наступать в ответ на более слабые.

В 1862 г. И. М. Сеченов открыл явление центрального торможения. Он доказал в своем опыте, что раздражение кристалликом хлорида натрия зрительных бугров лягушки (большие полушария головного мозга удалены) вызывает торможение рефлексов спинного мозга. После устранения раздражителя рефлекторная деятельность спинного мозга восстанавливалась. Результат этого опыта позволил И. М. Сеченому сделать заключение, что в ЦНС наряду с процессом возбуждения развивается процесс торможения, который способен угнетать рефлекторные акты организма. Н. Е. Введенский высказал предположение, что в основе явления торможения лежит принцип отрицательной индукции: более возбудимый участок в ЦНС тормозит активность менее возбудимых участков.

Современная трактовка опыта И. М. Сеченова (И. М. Сеченов раздражал ретикулярную формацию ствола мозга): возбуждение ретикулярной формации повышает активность тормозных нейронов спинного мозга – клеток Реншоу, что приводит к торможению?-мотонейронов спинного мозга и угнетает рефлекторную деятельность спинного мозга.

7. Методы изучения ЦНС

Существуют два большие группы методов изучения ЦНС:

1) экспериментальный метод, который проводится на животных;

2) клинический метод, который применим к человеку.

К числу экспериментальных методов классической физиологии относятся методы, направленные на активацию или подавление изучаемого нервного образования. К ним относятся:

1) метод поперечной перерезки ЦНС на различных уровнях;

2) метод экстирпации (удаления различных отделов, денервации органа);

3) метод раздражения путем активирования (адекватное раздражение – раздражение электрическим импульсом, схожим с нервным; неадекватное раздражение – раздражение химическими соединениями, градуируемое раздражение электрическим током) или подавления (блокирования передачи возбуждения под действием холода, химических агентов, постоянного тока);

4) наблюдение (один из старейших, не утративших своего значения метод изучения функционирования ЦНС. Он может быть использован самостоятельно, чаще используется в сочетании с другими методами).

Экспериментальные методы при проведении опыта часто сочетаются друг с другом.

Клинический метод направлен на изучение физиологического состояния ЦНС у человека. Он включает в себя следующие методы:

1) наблюдение;

2) метод регистрации и анализа электрических потенциалов головного мозга (электро-, пневмо-, магнитоэнцефалография);

3) метод радиоизотопов (исследует нейрогуморальные регуляторные системы);

4) условно-рефлекторный метод (изучает функции коры головного мозга в механизме обучения, развития адаптационного поведения);

5) метод анкетирования (оценивает интегративные функции коры головного мозга);

6) метод моделирования (математического моделирования, физического и т. д.). Моделью является искусственно созданный механизм, который имеет определенное функциональное подобие с исследуемым механизмом организма человека;

7) кибернетический метод (изучает процессы управления и связи в нервной системе). Направлен на изучение организации (системных свойств нервной системы на различных уровнях), управления (отбора и реализации воздействий, необходимых для обеспечения работы органа или системы), информационной деятельности (способности воспринимать и перерабатывать информацию – импульс в целях приспособления организма к изменениям окружающей среды).

Электроэнцефалография (ЭЭГ) – это регистрация суммарной электрической активности головного мозга. Электрические колебания в коре головного мозга обнаружены Р. Кетон (1875) и В.Я. Данилевский (1876). Запись ЭЭГ возможна как поверхности кожи головы, так и с поверхности коры в эксперименте и в клинике при нейрохирургических операциях. В этом случае она называется электрокортикограммой. Запись ЭЭГ производится с помощью биполярных (оба активны) или униполярных (активный и индифферентный) электродов, накладываемых попарно и симметрично в лобно-полюсных, лобных, центральных, теменных, височных и затылочных областях мозга. Кроме записи фоновой ЭЭГ используют функциональные пробы: экстероцептивные (световые, слуховые и др.), проприоцептивные, вестибулярные раздражители, гипервентиляция, сон. На ЭЭГ регистрируется четыре основных физиологических ритма: альфа-, бета-, гамма- и дельта- ритмы.

Метод вызванных потенциалов (ВП) – это измерение электрической активности мозга, возникающее в ответ на раздражение рецепторов, афферентных путей и центров переключения афферентной импульсации. В клинической практике ВП обычно получают в ответ на стимуляцию рецепторов, преимущественно зрительных, слуховых или соматосенсорных. ВП регистрируют при записи ЭЭГ, как правило, с поверхности головы, хотя их можно записать и с поверхности коры, а также в глубоких структурах мозга, например в таламусе. Методика ВП используется для объективного изучения сенсорных функций, процесса восприятия, проводящих путей мозга при физиологических и патологических состояниях (например, при опухолях мозга искажается форма ВП, уменьшается амплитуда, исчезают некоторые компоненты).

Функциональная компьютерная томография:

Позитронно-эмиссионная томография – это прижизненный метод функционального изотопного картирования мозга. Методика основана на введение в кровоток изотопов (O 15 , N 13 , F 18 и др.) в соединении с дезоксиглюкозой. Чем активнее участок мозга, тем больше поглощает он меченой глюкозы, радиоактивное излучение которой регистрируется детекторами, расположенными вокруг головы. Информация от детекторов поступает на компьютер, создающий на регистрируемом уровне «срезы» мозга, отражающее неравномерность распределения изотопа в связи с метаболической активностьюмозговых структур.

Функциональная магнитно-резонансная томография основана на том, что при потере кислорода гемоглобин приобретает парамагнитные свойства. Чем выше метаболическая активность мозга, тем больше объемный и линейный кровоток в данном участке мозга и тем меньше соотношение парамагнитного дезоксигемоглобина к оксигемоглобину. В мозге существует много очагов активации, что отражается в неоднородности магнитного поля. Этот метод позволяет выявить активно работающие участки мозга.

Реоэнцефалография основана на регистрации изменения сопротивления тканей переменному току высокой частоты в зависимости от их кровенаполнения. Реоэнцефалография позволяет косвенно судить о величине общего кровенаполнения мозга и его ассиметрии в различных сосудистых зонах, о тонусе эластичности сосудов мозга, состоянии внезапного оттока.

Эхоэнцефалография основана на свойстве ультразвука в разной степени отражаться от структур головы – ткани мозга и его патологических образований, ликвора, костей черепа и др. Кроме определения локализации некоторых структур мозга (особенно срединных) эхоэнцефалография благодаря использованию эффекта Доплера позволяет получить сведения о скорости и направлении движения крови в сосудах, участвующих в кровоснабжении мозга (Эффект Доплера - изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника или движением приёмника.).

Хронаксиметрия позволяет определить возбудимость нервной и мышечной тканей путем измерения минимального времени (хронаксии) при действии раздражителя удвоенной пороговой силы. Чаще определяют хронаксию двигательной системы. Хронаксия увеличивается при поражении спинальных мотонейронов, уменьшается при поражении двигательных нейронов коры. На ее величину влияет состояние структур ствола. Например таламуса и красного ядра. Можно также определить хронаксию сенсорных систем – кожной, зрительной, вестибулярной (по времени возникновения ощущений), что позволяет судить о функции анализаторов.

Стереотаксический метод позволяет с помощью устройства для точного перемещения электродов во фронтальном, сагиттальном и вертикальном направлениях ввести электрод (или микропипетку, термопару) в различные структуры головного мозга. Через введенные электроды можно регистрировать биоэлектрическую активность данной структуры, раздражать или разрушать ее, через микроканюли вводить химические вещества в нервные центры или желудочки мозга.

Метод раздражения различных структур ЦНС слабым электротоком с помощью электродов или химическими веществами (растворы солей, медиаторов, гормонов), подводимыми с помощью микропипеток механическим способом или с использованием электрофореза.

Метод выключения различных участков ЦНС можно производить механическим, электролитическим путем, используя замораживание или электрокоагуляцию, а также узконаправленным пучком или вводя снотворные вещества в сонную артерию, можно обратимо выключать некоторые отделы головного мозга, например большое полушарие.

Метод перерезки на разных уровнях ЦНС в эксперименте можно получить спинальный, бульбарный, мезэцефальный, диэнцефальный, декортицированный организмы, расщепленный мозг (операция комиссуротомии); нарушить связь между корковой областью и нижележащими структурами (операция лоботомии), между корой и подкорковыми структурами (нейронально изолированная кора). Этот метод позволяет глубже понять функциональную роль как центров, расположенных ниже перерезки, так и отключаемых высших центров.

Патологоанатомический метод – прижизненное наблюдение за нарушением функций и посмертное исследование мозга.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20

В последнее время очень распространенными стали заболевания, связанные с нервной системой. Причин тому масса, и часто больные, приходящие с жалобами к специалистам, долго не смогут получить ответ на вопрос, что с ними.

К сожалению, человеческий мозг до сих пор до конца не исследован, и возможность возникновения тех или иных отклонений в работе нервной системы и ее последствия часто находятся на стадии изучения.

Обычно постановка диагноза и назначение лечения при заболеваниях нервной системы процесс довольно длительный. Именно поэтому было изобретено множество методов, которые направлены на исследование нервной системы. Цель создания таких методов – это в первую очередь помощь специалисту в быстрой и четкой установке диагноза. Ведь множество заболеваний поддаются лечению только на ранних стадиях. Так давайте рассмотрим, в чем состоят современные методы исследования нервной системы.

Методы исследования.

Современная инструментальная диагностика всех видов заболеваний занимает очень важное место в процессе профилактики и лечения различных заболеваний, в том числе и нервной системы. Как известно болезнь легче предупредить, чем лечить, именно поэтому, разрабатываются приборы которые способны выявить малейшие отклонения и дать возможность не допустить прогрессирование и развитие болезни.

Что касается методов исследования нервной системы, то принято подразделять их на следующие разделы:

Нейровизуализационные методы;

Нейрофизиологические методы;

Методы исследования деятельности головного мозга;

Исследование сосудистой системы человека;

Другие методы.

К нейровизуальным методам принято относить: МРТ головного мозга, компьютерную томографию, эхоэнцефалоскопию. Такие, методы предназначены для исследования структуры головного мозга, диагностике при образовании гематом, объемных образованиях головного мозга или внутричерепной гипертензии.

Нейрофизиологические методы исследований – направлены на определения работы и полноценного выполнения функций нервных клеток (нейронов), нервов, нервных центров, спинного и головного мозга. К ним относятся:

ЭНМГ(электронейромиография) – определяет уровень поражения нервно-мышечного аппарата;

Термография – определяет болезни Коновалова – Вильсона, а так же Паркинсона;

Магнитная стимуляция (МС) – направлена, на исследования потенциалов головного мозгла, выявить отклонения, и оценить эффективность применения лечения при некоторых заболеваниях.

Методы лечения с помощью электродов.

К таким методам можно отнести методы исследования головного мозга, которые основываются на наружном применении электродов, для регистрации электрической активности. Такие процедуры являются безболезненными и не длительными, а так же безвредными для пациента. В процессе исследования больной обычно находится в расслабленном состоянии, и выполняет определенные задания, данные врачом, соответственно тому какие исследования проводятся. Это могут быть простые реакции на световые сигналы, глубокое дыхание или его задержка, пребывание пациента с открытыми или закрытыми глазами и другие дополнительные пробы. Обычно причиной для направления пациента на подобные исследования стают частые судороги, потери сознания, обмороки, вариации кризисов. Это единственный метод точного определения причины заболеваний. Соответственно результатам исследований дальше подбирается правильное лечение, выписывается курс медикаментов, выявляются противопоказания к определенным методам лечения. Также данный способ исследования помогает определить сохранность функций структур головного мозга у больных находящихся в реанимации в коматозном состоянии.

При подозрении на эпилепсию и тики обычно для исследования очага патологии применяется видео ЭЭГ. Это метод, основанный на синхронной записи видеоизображения пациента и проведении ЭЭГ. Таким образом, можно выявить методом сопоставления двигательную активность пациента и электродную активность мозга, что помогает поставить точный диагноз.

Множественная запись сна.

Множественная запись сна или как ее еще называют полисомнография – это метод, основанный на наблюдении за состоянием и деятельностью головного мозга в период сна. Обычно сон занимает больше третьей части нашей жизни, и очень часто патологии сна вызывают проблемы со здоровьем. Обычно такими становятся бессонница, головная боль, храп, раздражительность, дневная сонливость и другие. Результаты данных исследований в комплексе всех факторов определяют первопричину патологии, и соответственно дают возможность правильно установить лечение.

Для определений патологий функций нервной системы также применяется метод, который называется вызывание потенциалов головного мозга. Метод основывается на записи мозговой активности, которая вызвана различными раздражителями. Таким способом обычно исследуются зрительная система, и слух, а также вестибулярная система. Это дает возможность исследовать , ретробульбарный неврит, травматическое поражение зрительных нервов, а также нарушения утреннего уха, слуховой нерв, нарушения в стволе головного мозга. Обычно таким методом также определяется причина тугоухости, степень поражения ствола головного мозга при травмах, а также деформации шейного отдела позвоночника. Данное исследование применяется к пациентам, у которых выявлены такие симптомы как частое головокружение, посторонние звуки в ушах, такие как шум или звон, а также диагностирование отита.

Существует еще множество методов, которые помогают определить заболевание на ранних стадиях, и своевременно принять соответствующие меры. Современная медицина постоянно развивается и не стоит на месте. Это дает возможность надеяться, что вскоре у людей появится возможность надеяться на полное выздоровление даже при самых сложных заболеваниях. А пока нашей основной задачей остается эти заболевания не допустить. Не бойтесь проходить обследование, и обращаться к врачу, при каких-либо симптомах. Ведь ваше здоровье одно, и его намного легче сберечь, чем восстановить.

Существуют следующие методы исследования функций ЦНС:

1. Метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом.

2. Метод экстирпации (удаления) или разрушения участков мозга.

3. Метод раздражения различных отделов и центров мозга.

4. Анатомо-клинический метод. Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующим патологоанатомическим исследованием.

5. Электрофизиологические методы:

а. электроэнцефалография - регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г.Бергером.

б. регистрация биопотенциалов различных нервных центров; используется вместе со стереотаксической техникой, при которой электроды с помощью микроманипуляторов вводят в строго определенное ядро.

в. метод вызванных потенциалов, регистрация электрической активности участков мозга при электрическом раздражении периферических рецепторов или других участков;

6. метод внутримозгового введения веществ с помощью микроинофореза;

7. хронорефлексометрия - определение времени рефлексов.

Свойства нервных центров

Нервным центром (НЦ) называется совокупность нейронов в различных отделах ЦНС, обеспечивающих регуляцию какой-либо функции организма. Например, бульбарный дыхательный центр.

Для проведения возбуждения через нервные центры характерны следующие особенности:

1. Одностороннее проведение. Оно идет от афферентного, через вставочный к эфферентному нейрону. Это обусловлено наличием межнейронных синапсов.

2. Центральная задержка проведение возбуждения. Т.е. по НЦ возбуждение идет значительно медленнее, чем по нервному волокну. Это объясняется синаптической задержкой. Так как больше всего синапсов в центральном звене рефлекторной дуги, там скорость проведения наименьшая. Исходя из этого, время рефлекса, это время от начала воздействия раздражителя до появления ответной реакции. Чем длительнее центральная задержка, тем больше время рефлекса. Вместе с тем оно зависит от силы раздражителя. Чем она больше, тем время рефлекса короче и наоборот. Это объясняется явлением суммации возбуждений в синапсах. Кроме того, оно определяется и функциональным состоянием ЦНС. Например, при утомлении НЦ длительность рефлекторной реакции увеличивается.

3. Пространственная и временная суммация. Временная суммация возникает, как и в синапсах вследствие того, что чем больше поступает нервных импульсов, тем больше выделяется нейромедиатора в них, тем выше амплитуда ВПСП. Поэтому рефлекторная реакция может возникать на несколько последовательных подпороговых раздражений. Пространственная суммация наблюдается тогда, когда к нервному центру идут импульсы от нескольких рецепторов нейронов. При действии на них подпороговых стимулов, возникающие постсинаптические потенциалы суммируются и в мембране нейрона генерируется распространяющийся ПД.

4. Трансформация ритма возбуждения - изменение частоты нервных импульсов при прохождении через нервный центр. Частота может понижаться или повышаться. Например, повышающая трансформация (увеличение частоты) обусловлено дисперсией и мультипликацией возбуждения в нейронах. Первое явление возникает в результате разделения нервных импульсов на несколько нейронов, аксоны которых образуют затем синапсы на одном нейроне (рис). Второе, генерацией нескольких нервных импульсов при развитии возбуждающего постсинаптического потенциала на мембране одного нейрона. Понижающая трансформация объясняется суммацией нескольких ВПСП и возникновением одного ПД в нейроне.

5. Посттетаническая потенциация, это усиление рефлекторной реакции в результате длительного возбуждения нейронов центра. Под влиянием многих серий нервных импульсов, проходящих с большой частотой через синапсы,. выделяется большое количество нейромедиатора в межнейронных синапсах. Это приводит к прогрессирующему нарастанию амплитуды возбуждающего постсинаптического потенциала и длительному (несколько часов) возбуждению нейронов.

6. Последействие, это запаздывание окончания рефлекторного ответа после прекращения действия раздражителя. Связано с циркуляцией нервных импульсов по замкнутым цепям нейронов.

7. Тонус нервных центров - состояние постоянной повышенной активности. Он обусловлен постоянным поступлением к НЦ нервных импульсов от периферических рецепторов, возбуждающим влиянием на нейроны продуктов метаболизма и других гуморальных факторов. Например проявлением тонуса соответствующих центров является тонус определенной группы мышц.

8. Автоматия или спонтанная активность нервных центров. Периодическая или постоянная генерация нейронами нервных импульсов, которые возникают в них самопроизвольно, т.е. в отсутствии сигналов от других нейронов или рецепторов. Обусловлена колебаниями процессов метаболизма в нейронах и действием на них гуморальных факторов.

9. Пластичность нервных центров. Это их способность изменять функциональные свойства. При этом центр приобретает возможность выполнять новые функции или восстанавливать старые после повреждения. В основе пластичности Н.Ц. лежит пластичность синапсов и мембран нейронов, которые могут изменять свою молекулярную структуру.

10. Низкая физиологическая лабильность и быстрая утомляемость. Н.Ц. могут проводить импульсы лишь ограниченной частоты. Их утомление объясняется утомлением синапсов и ухудшением метаболизма нейронов.

Торможение в ЦНС

Явление центрального торможения обнаружено И.М. Сеченовым в 1862 году. Он удалял у лягушки полушария мозга и определял время спинномозгового рефлекса на раздражение лапки серной кислотой. Затем на таламус, т.е. зрительные бугры накладывал кристаллик поваренной соли и обнаружил, что время рефлекса значительно увеличивалось. Это свидетельствовало о торможении рефлекса. Сеченов сделал вывод, что вышележащие Н.Ц. при своем возбуждении тормозят нижележащие. Торможение в ЦНС препятствует развитию возбуждения или ослабляет протекающее возбуждение. Примером торможения может быть прекращение рефлекторной реакции, на фоне действия другого более сильного раздражителя.

Первоначально была предложена унитарно-химическая теория торможения. Она основывалась на принципе Дейла: один нейрон - один медиатор. Согласно ей торможение обеспечивается теми же нейронами и синапсами, что и возбуждение. В последующем была доказана правильность бинарно-химической теории. В соответствии с последней, торможение обеспечивается специальными тормозными нейронами, которые являются вставочными. Это клетки Реншоу спинного мозга и нейроны Пуркинье промежуточного. Торможение в ЦНС необходимо для интеграции нейронов в единый нервный центр.

В ЦНС выделяют следующие механизмы торможения:

1. Постсинаптическое. Оно возникает в постсинаптической мембране сомы и дендритов нейронов. Т.е. после передающего синапса. На этих участках образуют аксо-дендритные или аксо-соматические синапсы специализированные тормозные нейроны (рис). Эти синапсы являются глицинергическими. В результате воздействия ГЛИ на глициновые хеморецепторы постсинаптической мембраны, открываются ее калиевые и хлорные каналы. Ионы калия и хлора входят в нейрон, развивается ТПСП. Роль ионов хлора в развитии ТПСП небольшая. В результате возникающей гиперполяризации возбудимость нейрона падает. Проведение нервных импульсов через него прекращается. Алкалоид стрихнин может связываться с глициновыми рецепторами постсинаптической мембраны и выключать тормозные синапсы. Это используется для демонстрации роли торможения. После введения стрихнина у животного развиваются судороги всех мышц.

2. Пресинаптическое торможение. В этом случае тормозной нейрон образует синапс на аксоне нейрона, подходящем к передающему синапсу. Т.е. такой синапс является аксо-аксональным (рис). Медиатором этих синапсов служит ГАМК. Под действием ГАМК активируются хлорные каналы постсинаптической мембраны. Но в этом случае ионы хлора начинают выходить из аксона. Это приводит к небольшой локальной, но длительной деполяризации его мембраны. Значительная часть натриевых каналов мембраны инактивируется, что блокирует проведение нервных импульсов по аксону, а следовательно выделение нейромедиатора в передающем синапсе. Чем ближе тормозной синапс расположен к аксонному холмику, тем сильнее его тормозной эффект. Пресинаптическое торможение наиболее эффективно при обработке информации, так как проведение возбуждения блокируется не во всем нейроне, а только на его одном входе. Другие синапсы, находящиеся на нейроне продолжают функционировать.

3. Пессимальное торможение. Обнаружено Н.Е. Введенским. Возникает при очень высокой частоте нервных импульсов. Развивается стойкая длительная деполяризация всей мембраны нейрона и инактивация ее натриевых каналов. Нейрон становится невозбудимым.

В нейроне одновременно могут возникать и тормозные и возбуждающие постсинаптические потенциалы. За счет этого и происходит выделение нужных сигналов.


Похожая информация.


При исследовании функционального состояния ЦНС используются различные методы, в том числе простые, основанные на наблюдении за тем, как реализуются функции ЦНС: сенсорная, двигательная и вегетативная. Применяются методы исследования состояния высшей нервной деятельности (ВНД), в том числе методы, оценивающие епособность чело­века к выработке условного рефлекса, методы оценки высших психических функций - мышления, памяти, внимания.

В экспериметальной

физиологии широко при­меняются хирургические методы: перерезки, под­резки, экстирпации. Од­нако и в клинических ус­ловиях в ряде случаев ис­пользуются эти методы (но с целью лечения, а не для изучения функций). Разрушение структур мозга, перерезка отдель­ных путей обычно выпол­няются с использованием стереотаксической техни­ки; введение электродов в мозг человека или живот­ного в определенные его участки и на определен­ную глубину. Таким спо­собом, например, исполь­зуя методику электроли­за, можно удалить очаг, вызывающий эпилептиче­ские припадки. Пионером в этом направлении был Пенфильд. В России этот метод нашел применение в клинике у академика Н.П. Бехтеревой при ле-ченни ряда форм патоло­гии ЦНС, в том числе при болезни Паркинсона. Ко­нечно, использование этого метода для лечения человека имеет целый ряд ограничений.


Рис. 11. Регистрация вызванных по­тенциалов коры больших полушарий головного мозга кошки (по И.Г. Вла­совой).

1 ~ схема вызванных потенциалов коры
больших полушарий кошки: а - первич­
ный ответ (ПО): 1 -отметка раздражения,

2 - латентный период, 3 - положитель­
ная фаза, 4 - отрицательная фаза;



II - запись: а - ПО (зарегистрированы в первой соматосенсорной зоне коры боль­ших полушарий кошки при раздражении контралатерального седалищного нерва)

Рис. 12. Регистрация возбуждающе­го постсинаптического потенциала (ВПСП) и тормозного постсинаптиче-ского потенциала (ТПСП) нервной клетки.

I-возбуждающий постсинаптический по­тенциал: а - артефакт раздражения; б- ВПСП;

II-тормозной постсинаптический потен­циал: а - артефакт раздражения; б- ТПСП;


Наиболее активно в клинической и экспе­риментальной практике используются мето­ды регистрации электрической активности нейронов мозга. Например, метод микроэле" ктродной техники - его можно даже исполь­зовать на человеке - во время операций на мозге в соответствующие участки мозга вво­дится стеклянная микропипетка, с помощью которой н регистрируется электрическая ак­тивность отдельного нейрона. Это же можно осуществить с нейронами, изолированными из организма.

Методика вызванных потенциалов (ВП) интересна тем, что с ее помощью можно оце­нить все те структуры мозга, которые прини­мают участие в обработке информации, иду­щей от данного рецептора. Если в данный уча­сток мозга (где находятся отводящие элект­роды) поступает информация, то в этой обла­сти регистрируются вызванные потенциалы.

Особую популярность приобрел Метод электроэнцефалографии: регистрация сум­марной электрической активности нейронов мозга (главным образом коры). Осуществля­ется путем регистрации разности потенциа­лов между двумя какими-либо точками, рас­положенными на голове. Существует опреде­ленная классификация различных видов отве­дений, используемых в ЭЭГ. В целом, ЭЭГ представляет собой низкоамплитудные коле­бания электрической активности, частотные и амплитудные характеристики которых зави­сят от состояния ЦНС. Различают ритмы ЭЭГ: альфа-ритм (8-13 Гц, 10-100 мкВ), бета-ритм (14-30 Гц, ампл. менее 20 мкВ), тета-ритм (7-11 Гц, ампл. более 100 мкВ), дель­та-ритм (менее 4 Гц, ампл. 150-200 мкВ). Обычно в условиях спокойной позы у челове­ка регистрируется альфа-ритм. При активном бодрствовании - бета-ритм. Переход от аль­фа- к бетафитму или от тета- к альфа- и бета-ритму называется десинхронизацией. При за­сыпании, когда уменьшается активность коры больших полушарий, имеет место синхрони­зация - переход электрической активности от альфа-ритма к тета- и даже к дельта-ритму. При этом клетки мозга начинают работать синхронно: частота генерации волн уменьша­ется, а их амплитуда возрастает. В целом, ЭЭГ позволяет определить характер состояния мозга (активный, бодрствующий или спящий мозг), стадии естественного сна, в том числе

Позволяет выяснить так называемый парадоксальный сон, она дает возможность судить о глубине наркоза, о наличии патологического очага в мозге (эпилептический очаг, опу­холь) и т. д. Хотя многие возлагали большие надежды на ЭЭГ как метод, позволяющий определить физиологические процессы, лежащие в основе мышления, но до сих пор в этом направлении не получено обнадеживающих данных.