Домой / Проверка личности Продавца квартиры / Давление в жидкости и газах. Отметьте верное окончание фразы. Вес воздуха. Атмосферное давление

Давление в жидкости и газах. Отметьте верное окончание фразы. Вес воздуха. Атмосферное давление

Задача 1

Турист проехал на велосипеде за один день 40 км. При этом с 9.00 до 11.20 он ехал со скоростью, которая равномерно возрастала со временем от 10 км/ч до 14 км/ч. Затем турист загорал на пляже. На оставшийся путь он потратил время с 18.30 до 20.00. Определите среднюю скорость туриста на вечернем участке поездки.

Возможное решение

С 9.00 до 11.20 турист ехал со средней скоростью (10 + 14)/2 = 12 км/ч (так как скорость возрастала равномерно со временем). Значит, за это время турист проехал расстояние

За время с 18.30 до 20.00 велосипедист проехал 40 – 28 = 12 км. Следовательно, средняя скорость туриста на вечернем участке поездки равна:

Критерии оценивания

  • Средняя скорость туриста на утреннем участке поездки (12 км/ч): 4 балла
  • Расстояние, которое проехал турист с 9.00 до 11.20 (28 км): 2 балла
  • Расстояние, которое проехал турист с 18.30 до 20.00 (12 км): 2 балла
  • Средняя скорость туриста на вечернем участке поездки (8 км/ч): 2 балла

Максимум за задачу – 10 баллов .

Задача 2

Система, состоящая из двух однородных стержней разной плотности, находится в равновесии. Масса верхнего стержня m 1 = 1,4 кг. Трение пренебрежимо мало.

Определите, при какой массе m 2 нижнего стержня возможно такое равновесие.

Возможное решение

Так как нижний стержень подвешен за концы, находится в равновесии и его центр тяжести располагается посередине, то силы реакции нитей, действующие на него, одинаковы и равны по модулю m 2 g/2 . Запишем уравнение моментов для верхнего стержня относительно точки крепления левой (верхней) нити:

Критерии оценивания

Силы реакции нитей, действующие на нижний стержень, равны: 3 балла

Значения модулей этих сил реакций (m 2 g/2 ): 2 балла

Уравнение моментов: 4 балла

m 2 = 1,2 кг : 1 балл

Максимум за задачу – 10 баллов .

Задача 3

В цилиндрическом сосуде с водой находится частично погружённое в воду тело, привязанное натянутой нитью ко дну сосуда. При этом тело погружено в воду на две трети своего объёма. Если перерезать нить, то тело всплывёт и будет плавать погружённым в воду наполовину. На сколько при этом изменится уровень воды в сосуде? Масса тела m = 30 г, плотность воды ρ = 1,0 г/см 3 , площадь дна сосуда S = 10 см 2 .

Возможное решение 1

Сила давления стакана на стол (после перерезания нити) не изменится, следовательно,

T = ρ·g· ∆h· S, где ܶT – сила реакции со стороны нити, ∆h – изменение уровня воды. Запишем уравнение равновесия тела в первом случае:

Mg = ρg·(1/2)·V

Из последних двух уравнений находим, что ܶT = 1/3 · mg

Окончательно получаем:

Критерии оценивания

  • Сила давления стакана на стол не изменится: 2 балла
  • Уравнение равновесия тела в первом случае: 2 балла
  • Уравнение равновесия тела во втором случае: 2 балла
  • T = 1/3 · mg: 1 балл
  • ∆h = T/(ρ·g · S): 2 балла
  • ∆h = 0,01м: 1 балл

Возможное решение 2

Уравнение равновесия тела во втором случае:

mg = ρg · ½ · V ⟹ V = 2m/ρ, где ܸV объём тела.

Изменение объёма погружённой части тела равно:

Окончательно получаем:

Критерии оценивания

  • mg = ρg · ½ · V: 4 балла
  • ∆V = 1/6 · V : 2 балла
  • ∆h = ∆V/S: 3 балла
  • ∆h = 0,01 м: 1 балл

Максимум за задачу – 10 баллов .

Задача 4

Определите давление воздуха над поверхностью жидкости в точке А внутри закрытого участка изогнутой трубки, если ρ = 800 кг/м 3 , h = 20 см, p 0 = 101 кПа, g = 10 м/с 2 . Жидкости плотностями ρ и 2ρ друг с другом не смешиваются.

Давление - величина, равная отношению силы, действующей перпендикулярно поверхности, называется давлением. За единицу давления принимается такое давление, которое производит сила в 1Н, действующая на поверхность площадью 1м2 перпендикулярно этой поверхности.

Следовательно, чтобы определить давление, надо силу, действующую перпендикулярно поверхности, разделить на площадь поверхности.

Известно, что молекулы газа движутся беспорядочно. При своём движении они сталкиваются друг с другом, а также со стенками сосуда, в котором находится газ. Молекул в газе много, поэтому и число их ударов очень велико. Хотя сила удара отдельной молекулы мала, но действие всех молекул о стенки сосуда значительно, оно и создаёт давление газа. Итак, давление газа на стенки сосуда (и на помещённое в газ тело) вызывается ударами молекул газа.

При уменьшении объёма газа его давление увеличивается, а при увеличении объёма давление уменьшается при условии, что масса и температура газа остаются неизменными.

В любой жидкости молекулы не связаны жёстко, и поэтому жидкость принимает форму того сосуда, куда она налита. Как и твёрдые тела, жидкость оказывает давление на дно сосуда. Но в отличие от твёрдых тел, жидкость производит давление также и на стенки сосуда.

Для объяснения этого явления мысленно разделим столб жидкости на три слоя (a, b, c). При этом можно видеть, что и внутри самой жидкости существует давление: жидкость находится под давлением силы тяжести, и на нижние слои жидкости действует вес верхних её слоёв. Сила тяжести, действующая на слой а, прижимает его ко второму слою b. Слой b передаёт производимое на него давление во все стороны. Кроме того, на этот слой также действует сила тяжести, прижимающая его к третьему слою с. Следовательно, в третьем сдое давление возрастает, и оно будет наибольшим у дна сосуда.

Давление внутри жидкости зависит от её плотности.

Давление, производимое на жидкость или газ, передаётся без изменения в каждую точку объёма жидкости или газа. Это утверждение называют законом Паскаля.

За единицу давления в СИ принято давление, которое производит сила 1Н на перпендикулярную к ней поверхность площадью 1м2. Эта единица называется паскалем (Па).

Наименование единице давления дано в честь французского учёного Блёза Паскаля

Блёз Паскаль

Блёз Паскаль - французский математик, физик и философ, родился 19 июня 1623 года. Он был третьим ребёнком в семье. Его мать умерла, когда ему было только три года. В 1632 году семейство Паскаля, покинуло Клермонт и отправилось в Париж. Отец Паскаля имел хорошее образование и решил непосредственно передать его сыну. Отец решил, что Блёз не должен изучать математику до 15 лет, и все математические книги были удалены из их дома. Однако любопытство Блёза, толкнуло его на изучение геометрии в возрасте 12 лет. Когда это узнал отец, он смягчился и позволил Блёзу изучить Эвклида.

Блёз Паскаль внёс значительный вклад в развитие математики, геометрии, философии и литературы.

В физики Паскаль занимался изучение барометрического давления и вопросами гидростатики.

На основе закона Паскаля легко объяснить следующий опыт.

Берём шар, имеющий в различных местах узкие отверстия. К шару присоединена трубка, в которую вставлен поршень. Если набрать воды в шар и вдвинуть в трубку поршень, то вода польётся из всех отверстий шара. В этом опыте поршень давит на поверхность воды в трубке.

Закон Паскаля

Частицы воды, находящиеся под поршнем, уплотняясь, передаётся его давление другим слоям, лежащим глубже. Таким образом, давление поршня передаётся в каждую точку жидкости, заполняющей шар. В результате часть воды выталкивается из шара в виде струек, вытекающих из всех отверстий.

Если шар заполнить дымом, то при вдвигании поршня в трубку из всех отверстий шара начнут выходить струйки дыма. Это подтверждает, (что и газы передают производимое на них давление во все стороны одинаково). Итак, опыт показывает, что внутри жидкости существует давление и на одном и том же уровне оно одинаково по всем направлениям. С глубиной давление увеличивается. Газы в этом отношении не отличаются от жидкостей.

Закон Паскаля справедлив для жидкостей и газов. Однако он не учитывает одного важного обстоятельства - существования веса.

В земных условиях этого нельзя забывать. Весит и вода. Поэтому понятно, что две площадки, находящиеся на разной глубине под водой, будут испытывать разные давления.

Давление воды, обусловленное её тяжестью, называют гидростатическим.

В земных условиях на свободную поверхность жидкости чаще всего давит воздух. Давление воздуха называют атмосферным. Давление на глубине складывается из атмосферного и гидростатического.

Если два сосуда разной формы, но с одинаковыми уровнями воды в них соединить трубкой, то вода не будет переходить из одного сосуда в другой. Такой переход мог бы произойти в том случае, если бы давления в сосудах различались. Но этого нет, и в сообщающихся сосудах независимо от их формы жидкость всегда будет находиться на одном уровне.

Например, если уровни воды в сообщающихся сосудах различны, то вода начнёт перемещаться, и уровни сравняются.

Давление воды много больше давления воздуха. На глубине 10м вода давит на 1см2 с дополнительной к атмосферному давлению силой в 1кГ. На глубине в километр - с силой в 100кГ на 1см2.

Океан в некоторых местах имеет глубину более 10км. Силы давления воды на таких глубинах исключительно велики. Куски дерева, опущенные на глубину 5км, уплотняются этим огромным давлением настолько, что после такого > тонут в бочке с водой, как кирпичи.

Это огромное давление создаёт большие препятствия исследователям жизни моря. Глубоководные спуски производятся в стальных шарах - так называемых батисферах, или батискафах, которым приходится выдерживать давление выше 1 тонны на 1см2.

Подводные же лодки опускаются лишь на глубину 100 - 200м.

Давление жидкости на дно сосуда зависит от плотности и высоты столба жидкости.

Измерим давление воды на дно стакана. Конечно, дно стакана деформируется под действием сил давления, и зная величину деформации, мы могли бы определить величину вызвавшей её силы и рассчитать давление; но эта деформация настолько мала, что измерить её непосредственно практически невозможно. Так как судить по деформации данного тела о давлении, оказываемом на него жидкостью, удобно лишь в том случае, когда деформации точно велики, то для практического определения давления жидкости пользуются специальными приборами - манометрами, в которых деформация имеет сравнительно большую, легко измеримую величину. Простейший мембранный манометр устроен следующим образом. Тонкая упругая пластина мембрана - герметически закрывает пустую коробку. К мембране присоединён указатель, вращающийся около оси. При погружении прибора в жидкость мембрана прогибается под действием сил давления, и её прогиб передаётся в увеличенном виде указателю, передвигающемуся по шкале.

Манометр

Каждому положению указателя соответствует определённый прогиб мембраны, а следовательно, и определённая сила давления на мембрану. Зная площадь мембраны, можно от сил давления перейти к самим давлениям. Можно непосредственно измерить давление, если заранее проградуировать манометр, то есть определить, какому давлению соответствует то или иное положение указателя на шкале. Для этого нужно подвергнуть манометр действию давлений, величина которых известна и, замечая положение стрелки указателя, проставить соответственные цифры на шкале прибора.

Воздушную оболочку, окружающую Землю, называют атмосферой. Атмосфера, как показали наблюдения за полётом искусственных спутников Земли, простирается на высоту несколько тысяч километров. Мы живём на дне огромного воздушного океана. Поверхность Земли - дно этого океана.

Вследствие действия силы тяжести верхние слои воздуха, подобно воде океана, сжимают нижние слои. Воздушный слой, прилегающий непосредственно к Земле, сжат больше всего и согласно закону Паскаля передаёт производимое на него давление по всем направлениям.

В результате этого земная поверхность и тела, находящиеся на ней, испытывают давление всей толщи воздуха, или, как обычно говорят, испытывают атмосферное давление.

Атмосферное давление не такое маленькое. На каждый квадратный сантиметр поверхности тела действует сила около 1кГ.

Причина атмосферного давления очевидна. Как и вода, воздух обладает весом, а значит, оказывает давление, равное (как и для воды) весу столба воздуха, находящегося над телом. Чем выше мы будем подниматься в гору, тем меньше воздуха будет над нами, а значит, тем меньше станет и атмосферное давление.

Для научных и житейских целей нужно уметь измерять давление. Для этого существуют специальные приборы - барометры.

Барометр

Изготовить барометр нетрудно. В трубку, закрытую с одного конца, наливают ртуть. Зажав пальцем открытый конец, опрокидывают трубку и погружают её открытым концом в чашку с ртутью. При этом ртуть в трубке опускается, но не выливается. Пространство над ртутью в трубке несомненно безвоздушное. Ртуть поддерживается в трубке давлением наружного воздуха.

Каких бы размеров мы не брали чашечку со ртутью, какого бы диаметра ни была трубка, ртуть всегда поднимается примерно на одну и ту же высоту - 76см.

Если взять трубку короче 76см, то она полностью заполниться ртутью, и мы не увидим пустоты. Столб ртути высотой 76см давит на подставку с той же силой, что и атмосфера.

Один килограмм на один квадратный сантиметр - это и есть величина нормального атмосферного давления.

Цифра 76см означает, что таким столбиком ртути уравновешивается столб воздуха всей атмосферы, расположенной над такой же площадкой.

Барометрической трубке можно придать самые различные формы, важно лишь одно: один конец трубки должен быть закрыт так, чтобы над поверхностью ртути не было воздуха. На другой уровень ртути действует давление атмосферы.

Ртутным барометром можно измерить атмосферное давление с очень большой точностью. Разумеется, не обязательно брать ртуть, годится и любая другая жидкость. Но ртуть - наиболее тяжёлая жидкость, и высота столба ртути при нормальном давлении будет наименьшей.

Для измерения давления пользуются различными единицами. Часто просто указывают высоту столба ртути в миллиметрах. Например, говорят, что сегодня давление выше нормы, оно равно 768мм рт. ст.

Давление в 760мм рт. ст. называют иногда физической атмосферой. Давление в 1кГ/см2 называют технической атмосферой.

Ртутный барометр - не особенно удобный прибор. Нежелательно поверхность ртути оставлять открытой (ртутные пары ядовиты), кроме того, прибор не портативен.

Этих недостатков нет у металлических барометров - анероидов.

Такой барометр все видели. Это небольшая круглая металлическая коробка со шкалой и стрелкой. На шкалу нанесены величины давления, обычно в сантиметрах ртутного столба.

Из металлической коробки выкачан воздух. Крышка коробки удерживается сильной пружиной, так как иначе она была бы вдавлена атмосферным давлением. При изменении давления крышка либо прогибается, либо выпячивается. С крышкой соединена стрелка, причём так, что при вдавливании стрелка идёт вправо.

Такой барометр градуируется сравнением его показаний со ртутным.

Если вы хотите узнать давление, не забудьте постучать пальцем по барометру. Стрелка циферблата испытывает большое трение и обычно застревает на >.

На атмосферном давлении основано простое устройство - сифон.

Шофёр хочет помочь своему товарищу, у которого кончился бензин. Как же отлить бензин из бака своей автомашины? Не наклонять же её, как чайник.

На помощь приходит резиновая трубка. Один конец её опускают в бензобак, а из другого конца ртом отсасывают воздух. Затем быстрое движение - открытый конец зажимают пальцем и устанавливают на высоте ниже бензобака. Теперь палец можно отнять - бензин будет выливаться из шланга.

Изогнутая резиновая трубка и есть сифон. Жидкость в этом случае движется по той же причине, что и в прямой наклонной трубке. В обоих случаях жидкость в конечном счёте течёт вниз.

Для действия сифона необходимо атмосферное давление: оно > жидкость и не даёт столбу жидкости в трубке разорваться. Если бы атмосферного давления не было, столб разорвался бы в точке перевала, и жидкость скатилась бы в оба сосуда.

Сифон давления

Сифон начинает работать, когда жидкость в правом (так сказать, >) колене опустится ниже уровня перекачиваемой жидкости, в которую опущен левый конец трубки. В противном случае жидкость уйдёт обратно.

В практике для измерения атмосферного давления используют металлический барометр, называемый анероидом (в переводе с греческого - без жидкостный. Так барометр называют потому, что он не содержит ртути).

Атмосфера удерживается силой тяжести, действующей со стороны Земли. Под действием этой силы верхние слои воздуха давят на нижние, поэтому слой воздуха, прилегающий к Земле, оказывается наиболее сжатым и наиболее плотным. Это давление в соответствии с законом Паскаля передаётся во все стороны и действует на все тела, находящиеся на Земле, и на её поверхность.

Толщина слоя воздуха, давящая на Землю, с высотой уменьшается, следовательно, уменьшается и давление.

На существование атмосферного давления указывает множество явлений. Если стеклянную трубку с опущенным поршнем поместить в сосуд с водой и плавно поднимать, то вода следует за поршнем. Атмосфера давит на поверхность воды в сосуде; по закону Паскаля это давление передаётся воде под стеклянной трубкой и гонит воду вверх, вслед за поршнем.

Ещё древней цивилизации были известны всасывающие насосы. С их помощью можно было поднять воду на значительную высоту. Вода удивительно послушно следовала за поршнем такого насоса.

Древние философы задумались о причинах этого и пришли к такому глубокомысленному заключению: вода следует за поршнем потому, что природа боится пустоты, поэтому-то между поршнем и водой не остаётся свободного пространства.

Рассказывают, что один мастер построил для садов герцога Тосканского во Флоренции всасывающий насос, поршень которого должен был затягивать воду на высоту более 10м. Но как ни старались засосать этим насосом воду, ничего не получалось. На 10м вода поднималась за поршнем, дальше поршень отходил от воды, и образовывалась та самая пустота, которой природа боится.

Когда с просьбой объяснить причину неудачи обратились к Галилею, он ответил, что природа действительно не любит пустоты, но до определённого предела. Ученик Галилея Торричелли, очевидно, использовал этот случай как повод для того, чтобы поставить в 1643 году свой знаменитый опыт с трубкой, наполненный ртутью. Этот опыт мы только что описали - изготовление ртутного барометра и есть опыт Торричелли.

Взяв трубку высотой более 76мм, Торричелли создал пустоту над ртутью (её часто называют в честь торричеллиевой пустоты) и таким образом доказал существование атмосферного давления.

Этим опытом Торричелли разрешил недоумение мастера Тосканского герцога. Действительно, ясно на протяжении скольких метров вода будет покорно следовать за поршнем всасывающего насоса. Это движение будет продолжаться до тех пор, пока столб воды площадью 1см2 не станет равным по весу 1кГ. Такой столб воды будет иметь высоту 10м. Вот почему природа боится пустоты. , но более чем до 10м.

В 1654 году, спустя 11 лет после открытия Торричелли, действие атмосферного давления было наглядно показано магдебургским бургомистром Отто фон Герике. Известность принесла автору не столько физическая сущность опыта, сколько театральность его постановки.

Два медных полушария были соединены кольцевой прокладкой. Через кран, приделанный к одному из полушариев, из составленного шара был выкачан воздух, после чего полушария невозможно было разнять. Сохранилось подробное описание опыта Герике. Давление атмосферы на полушария можно сейчас рассчитать: при диаметре шара 37см сила равнялась примерно одной тонне. Чтобы разъединить полушария, Герике приказал запрячь две восьмёрки лошадей. К упряжи шли канаты, продетые через кольцо, прикреплённые к полушариям. Лошади оказались не в силах разъединить полушария.

Силы восьми лошадей (именно восьми, а не шестнадцати, так как вторая восьмёрка, запряжённая для пущего эффекта, могла быть заменена крюком, вбитым в стену, с сохранением той же силы, действующей на полушария) было недостаточно для разрыва магдебургских полушарий.

Если между двумя соприкасающимися телами имеется пустая полость, то эти тела не будут распадаться благодаря атмосферному давлению.

На уровне моря значение атмосферного давления обычно равно давлению столбика ртути высотой 760мм.

Измеряя атмосферное давление барометром, можно обнаружить, что оно уменьшается с увеличением высоты над поверхностью Земли (примерно на 1мм рт. ст. при подъёме в высоту на 12м). Также изменения атмосферного давления связано с изменениями погоды. Например, повышение атмосферного давления связывают с наступлением ясной погоды.

Значение атмосферного давления весьма важно для предсказания погоды на ближайшие дни, так как изменение атмосферного давления связано с изменениями погоды. Барометр - необходимый прибор при метеорологических наблюдениях.

Колебания давления от погоды имеют очень нерегулярный характер. Когда-то думали, что только одно давление и определяет погоду. Поэтому на барометрах ещё и до сих пор ставятся надписи: ясно, сухо, дождь, буря. Встречается даже надпись: >.

Изменение давления действительно играет большую роль в изменениях погоды. Но эта роль не решающая.

С распределением атмосферного давления связаны направление и сила ветра.

Давление в разных местах земной поверхности неодинаково, и более сильное давление > воздух в места с более низким давлением. Казалось бы, ветер должен дуть в направлении, перпендикулярном к изобарам, то есть туда, где давление падает наиболее быстро. Однако карты ветров показывают иное. В дела воздушного давления вмешивается кориолисова сила и вносит свою поправку, очень значительную.

Как нам известно, на любое тело, движущееся в северном полушарии, действует кориолисова сила, направленная вправо по движению. Это относится и к частицам воздуха. Выжимаемая из мест большего давления к местам, где давление поменьше, частица должна двигаться поперёк изобар, но кориолисова сила отклоняет её вправо, и направление ветра образует угол примерно в 45 градусов с направлением изобар.

Поразительно большой эффект для такой маленькой силы. Это объясняется тем, что помехи действию силы Кориолиса - трение воздушных слоёв - также очень незначительны.

Ещё более интересно влияние силы Кориолиса на направление ветров в > и > давления. Из-за действия кориолисовой силы воздух, отходя от > давления, не стекает во все стороны по радиусам, а движется по кривым линиям - спиралям. Эти спиральные воздушные потоки закручиваются в одну и ту же сторону и создают в области давления круговой вихрь, перемещающий воздушные массы по часовой стрелке.

То же самое происходит и в области пониженного давления. При отсутствии силы Кориолиса воздух стекался бы к этой области равномерно по всем радиусам. Однако по дороге воздушные массы отклоняются вправо.

Ветры в области низкого давления называются циклонами, ветры в области высокого давления называются антициклонами.

Не надо думать, что всякий циклон означает ураган или бурю. Прохождение циклонов или антициклонов через город, где мы живём, - обычное явление, связанное, правда, большей частью с переменной погоды. Во многих случаях приближение циклона означает наступление ненастья, а приближение антициклона - наступление хорошей погоды.

Впрочем, мы не будем становиться на путь прорицателей погоды.

Давление воздуха - сила, с которой воздух давит на земную поверхность. Измеряется в миллиметрах ртутного столба, миллибарах. В среднем она составляет 1,033 г. на 1 см. кв.

Причина, вызывающая образования ветра - разница атмосферного давления. Ветер дует из области более высокого атмосферного давления, в область с более низким. Чем больше разница в атмосферном давлении, тем сильнее ветер. Распределение атмосферного давления на Земле определяет направление ветров, господствующих в тропосфере на разных широтах.

Образуются при конденсации водяного пара в поднимающемся воздухе вследствие его охлаждения.
. Вода в жидком или твердом состоянии, выпадающая на земную поверхность, называется атмосферными осадками.

По происхождению выделяют два вида осадков:

выпадающие из облаков (дождь, снег, крупа, град);
образующиеся у поверхности Земли ( , роса, изморозь).
Измеряются осадки слоем воды (в мм.), который образуется, если выпавшая вода не стекает и не испаряется. В среднем за год на Землю выпадает 1130 мм. осадков.

Распределение осадков . Атмосферные осадки распределены по земной поверхности очень неравномерно. Одни территории страдают от избытка влаги, другие от её недостатка. Особенно мало получают осадков территории, расположенные вдоль северного и южного тропиков, где воздуха высоки и потребность в осадках особенно велика.

Главная причина такой неравномерности - размещение поясов атмосферного давления. Так, в области экватора в поясе низкого давления постоянно нагретый воздух содержит много влаги, он поднимается вверх, охлаждается и становится насыщенным. Поэтому в области экватора образуется много облаков, и идут обильные дожди. Немало осадков и в других областях земной поверхности, где низкое давление.

В поясах высокого давления преобладают нисходящие воздушные потоки. Холодный воздух, опускаясь, содержит мало влаги. При опускании он сжимается и нагревается, благодаря чему удаляется от точки насыщения, становится суше. Поэтому в областях повышенного давления над тропиками и у полюсов выпадает мало осадков.

По количеству выпадающих осадков ещё нельзя судить об обеспеченности территории влагой. Необходимо учитывать возможное испарение - испаряемость. Она зависит от количества солнечного тепла: чем больше его, тем больше влаги может испариться, если она есть. Испаряемость может быть большой, а испарение маленьким. Например, в испаряемость (сколько влаги может испариться при данной температуре) 4500 мм/год, а испарение (сколько действительно испаряется) всего 100 мм/год. По соотношению испаряемости и испарения судят об увлажненности территории. Для определения увлажнения пользуются коэффициентом увлажнения. Коэффициент увлажнения – отношение годового количества осадков к испаряемости за один и тот же промежуток времени. Он выражается дробью в процентах. Если коэффициент равен 1 - увлажнение достаточное, если меньше 1, увлажнение недостаточное, а если больше 1, то увлажнение избыточное. По степени увлажнения выделяются влажные (гумидные) и сухие (аридные) области.

Лабораторная работа № 11

КРАТКАЯ ТЕОРИЯ. Важнейший признак жидкости - существование свободной поверхности . Молекулы поверхностного слоя жидкости, имеющего толщину порядка 10 -9 м, находятся в ином состоянии, чем молекулы в толще жидкости. Поверхностный слой оказывает на жидкость давление, называемое молекулярным , что приводит к появлению сил, которые называются силами поверхностного натяжения .

Силы поверхностного натяжения в любой точке поверхности направлены по касательной к ней и по нормали к любому элементу линии, мысленно проведенной на поверхности жидкости. Коэффициент поверхностного натяжения -физическая величина, показывающая силу поверхностного натяжения, действующую на единицу длины линии, разделяющей поверхность жидкости на части:

С другой стороны, поверхностное натяжение можно определить как величину, численно равную свободной энергии единицы поверхностного слоя жидкости. Под свободной энергией понимают ту часть энергии системы, за счет которой может быть совершена работа при изотермическом процессе.

Коэффициент поверхностного натяжения зависит от природы жидкости. Для каждой жидкости он является функцией температуры и зависит от того, какая среда находится над свободной поверхностью жидкости.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА. Экспериментальная установка изображена на рис. 1. Она состоит из аспиратора А, соединенного с микроманометром М и сосудом В, в котором находится исследуемая жидкость. В аспиратор наливается вода. С помощью крана К аспиратор А может отсоединяться от сосуда В и присоединяться к такому же сосуду С с другой исследуемой жидкостью. Сосуды В и С плотно закрываются резиновыми пробками, имеющими по отверстию. В каждое отверстие вставляется стеклянная трубочка, конец которой представляет собой капилляр. Капилляр погружается на очень малую глубину в жидкость (так, чтобы он только касался поверхности жидкости). Микроманометр измеряет разность давления воздуха в атмосфере и аспираторе, или, что то же самое, в капилляре и сосуде В или С.

Микроманометр состоит из двух сообщающихся сосудов, один из которых представляет собой чашку большого диаметра, а другой наклонную стеклянную трубку малого диаметра (2 - 3 мм) (рис. 2). При достаточно большом отношении площадей сечений чашки и трубки можно пренебречь изменением уровня в чашке. Тогда по уровню жидкости в трубке малого диаметра можно определить измеряемую величину разности давлений:

где - плотность манометрической жидкости; - расстояние вдоль трубки принимаемого неизменным уровня жидкости в чашке; - угол, образованный наклонной трубкой с плоскостью горизонта.

В начальный момент времени, когда давление воздуха над поверхностью жидкости в капилляре и сосуде В одинаково и равно атмосферному, уровень смачивающей жидкости в капилляре выше, чем в сосуде В, а уровень несмачивающей – ниже, так как смачивающая жидкость в капилляре образует вогнутый мениск, а несмачивающая - выпуклый.

Молекулярное давление под выпуклой поверхностью жидкости больше, а под вогнутым - меньше относительно давления под плоской поверхностью. Молекулярное давление, обусловленное кривизной поверхности, принято называть избыточным капиллярным давлением (давлением Лапласа) . Избыточное давление под выпуклой поверхностью считается положительным, под вогнутой - отрицательным. Сила этого давления всегда направлена к центру кривизны сечения поверхности. В случае сферической поверхности избыточное давление можно вычислить по формуле:

где - поверхностное натяжение, - радиус сферической поверхности.

Смачивающая капилляр жидкость поднимается до тех пор, пока гидростатическое давление столбика жидкости высотой (рис. 3) не уравновесит избыточного давления, направленного в этом случае вверх. Высота определяется из условия равновесия:

где - ускорение свободного падения, т.е.

Если, повернув кран аспиратора А, медленно выпускать из него воду, то давление воздуха в аспираторе, в соединенных с ним сосуде В и наклонном колене микроманометра, начнет уменьшаться. В капилляре же над поверхностью жидкости давление равно атмосферному. В результате увеличивающейся разности давлений мениск жидкости в капилляре будет опускаться, сохраняя кривизну, пока не опустится до нижнего конца капилляра (рис. 3в). В этот момент давление воздуха в капилляре будет равно:

где - давление воздуха в сосуде В, - глубина погружения капилляра в жидкость, - давление Лапласа. Разность давлений воздуха в капилляре и сосуде В равна:

С этого момента начинает меняться кривизна мениска. Давление воздуха в аспираторе и сосуде В продолжает уменьшаться. Так как разность давлений увеличивается, радиус кривизны мениска убывает, а кривизна возрастает. Наступает момент, когда радиус кривизны становится равным внутреннему радиусу капилляра (рис. 3в), а разность давлений становится максимальной. Затем радиус кривизны мениска снова увеличивается, и равновесие будет неустойчивым. Образуется пузырек воздуха, который отрывается от капилляра и поднимается на поверхность. Жидкость затягивает отверстие. Далее все повторяется. На рис. 4 показано, как меняется радиус кривизны мениска жидкости, начиная с момента, когда он дошел до нижнего конца капилляра.

Из сказанного выше следует, что:

, (1)

где - внутренний радиус капилляра. Эту разность можно определить с помощью микроманометра, так как

где - плотность манометрической жидкости, - максимальное смещение уровня жидкости в наклонной трубке микроманометра, - угол между наклонным коленом микроманометра и горизонталью (см. рис. 2).

Из формул (1) и (2) получим:

. (3)

Так как глубина погружения капилляра в жидкость ничтожна , то ею можно пренебречь, тогда:

или , (4)

где - внутренний диаметр капилляра.

В том случае, когда жидкость не смачивает стенки капилляра, за в формуле (4) принимают внешний диаметр капилляра. В качестве манометрической жидкости в микроманометре используется вода ( = 1×10 3 кг/м 3).

ИЗМЕРЕНИЯ. 1. Плотно закрыть резиновой пробкой капилляр, предварительно измерив его внутренний диаметр с помощью микроскопа. Капилляр вставить в отверстие пробки. Конец трубки привести в соприкосновение с жидкостью.

2. Налить в аспиратор воду до метки и закрыть его. Добиться равенства давлений в обоих коленах микроманометра, для чего на короткое время извлечь кран К. Установить его в такое положение, в котором он соединяет сосуд с аспиратором.

3. Открыть кран аспиратора настолько, чтобы изменение давления происходило достаточно медленно. Пузырьки воздуха должны отрываться примерно через каждые 10-15 с. После установления указанной частоты образования пузырьков можно проводить измерения.

ЗАДАНИЕ.

1. С помощью термометра определить и записать комнатную температуру T .

2. Девять раз определить максимальное смещение уровня жидкости в наклонном колене микроманометра. Для расчета коэффициента поверхностного натяжения взять среднее значение Н ср .

Внутреннее трение в жидкости.

1. Расход жидкости в трубке тока:

а) объемный расход:

б) массовый расход:

где S – площадь поперечного сечения трубки тока;

v – скорость жидкости;

ρ – плотность жидкости.

2. Уравнение неразрывности струи:

где S 1 и S 2 – площади поперечного сечения трубки тока в двух местах;

v 1 и v 2 – соответствующие скорости течений.

3. Уравнение Бернулли:

4. Скорость течения жидкости из малого отверстия в открытом широком сосуде:

где h – уровень жидкости относительно отверстия.

5. Поверхностное натяжение:

где F – сила поверхностного натяжения, действующая на контур l , ограничивающий поверхность жидкости.

6. Формула Лапласа, выражающая давление Р , создаваемое сферической поверхностью жидкости:

где R – радиус сферической поверхности.

7. Высота подъема жидкости в капиллярной трубке определяется по формуле Жюрена:

где Θ – краевой угол;

ρ – плотность жидкости;

r – радиус капилляра.

8. Высота подъема жидкости между двумя близкими и параллельными плоскостями:

где d – расстояние между плоскостями.

9. Объем жидкости (газа), протекающей за время t через длинную трубку:

где r – радиус трубки;

l – длина трубки;

Δр – разность давлений на концах трубки,

η – коэффициент внутреннего сопротивления.

10. Число Рейнольдса для потока жидкости в длинных трубках

где (v) – средняя по сечению скорость течения жидкости;
d – диаметр трубки.

11. Число Рейнольдса для движения шарика в жидкости:

где v – скорость шарика;

d – диаметр шарика.

12. Сила сопротивления F , действующая со стороны потока жидкости на медленно движущийся в ней шарик (формула Стокса):



где r – радиус шарика;

v – скорость шарика.


Задачи.

1. Найти скорость течения по трубе углекислого газа, если известно, что за полчаса через поперечное сечение трубы протекает 0,51 кг газа. Плотность газа принять равной 7,5 кг/м 3 . Диаметр трубы равен 2 см.

2. В дне цилиндрического сосуда имеется круглое отверстие диаметром d =1 см. Диаметр сосуда D =0,5 м. Найти зависимость скорости v понижения уровня воды в сосуде от высоты h этого уровня. Найти численное значение этой скорости для высоты h =0,2 м.

Молоко течёт по молокопроводу диаметром 38 мм (установка УДС-1). На одном участке диаметр трубы уменьшился до 30 мм. На сколько изменится давление молока в этом участке трубы по сравнению с остальной частью трубы? Скорость течения молока в основной части трубы 2м/с.

4. Как высотой h =1,5 м наполнен до краёв водой. На расстоянии d =1 м от верхнего края бака образовалось отверстие малого диаметра. На каком расстоянии l от бака падает на пол струя, вытекающая из отверстия.

5. Струя воды с площадью S 1 поперечного сечения, равной 4 см 2 , вытекает в горизонтальном направлении из брансбойда, расположенного на высоте Н =2 м над поверхностью Земли, и падает на эту поверхность на расстоянии l =8 м. Пренебрегая сопротивлением воздуха движению воды, найти избыточное давление Р воды в рукаве, если площадь S 2 поперечною сечения рукава равна 50 см 2 .

6. Трубка имеет диаметр d =0,2 см. На нижнем конце трубки повисла капля воды, имеющая в момент отрыва вид шарика. Найти диаметр d 2 этой капли.

7. Масса m 100 капель спирта, вытекающего из капилляра, равна 0,71 г. Определить поверхностное натяжение α спирта, если диаметр d шейки капли в момент отрыва равен 1 мм.

8. В воду опущена на очень малую глубину стеклянная трубка с диаметром d внутреннего канала, равным 1 мм. Найти массу воды m , вошедшей в трубку.

9. Капиллярная трубка диаметром d =0,5 мм наполнена водой. На нижнем конце трубки вода нависла в виде капли. Эту каплю можно принять за часть сферы радиуса r =3 мм. Найти высоту h столбика воды в трубке.

10. Какую работу А надо совершить при выдувании пузыря, чтобы увеличить его объем от V 1 =8 см 3 до V 2 = 16 см 3 ? Считать процесс изотермическим. (α =4 · 10 -2 Н/м).

11. Какая энергия выделится при слиянии двух капель ртути диаметром d 1 =0,8 мм и d 2 =1,2 мм в одну каплю. (α =0,5 Н/м, ρ =13,6 · 10 3 кг/м 3)

12. Найти добавочное давление внутри мыльного пузыря диаметром d =5 см. Какую работу нужно совершить, чтобы выдуть этот пузырь?

13. В сосуде находится сыворотка крови, плотность которой 1026 кг/м 3 и α =6 ·10 -2 Н/м. На глубине 25 см от поверхности жидкости образовался пузырек воздуха диаметром 10 мкм. Определить давление воздуха в пузырьке, если атмосферное давление равно 750 мм. рт. столба.

14. Какой объем крови протекает через кровеносный сосуд длиной 50 мм и диаметром 3 см за 1 минуту, если на его концах имеется разность давлений в 2 мм. рт. ст. (η =4 · 10 -3 Па·с)

Шарик всплывает с постоянной скоростью в жидкости, плотность которой в 4 раза больше плотности материала шарика. Во сколько раз сила трения, действующая на всплывающий шарик, больше веса этого шарика.

16. В сосуде с глицерином падает свинцовый шарик. Определить максимальное значение диаметра шарика, при которой движение слоев глицерина, вызванное падением шарика, является ещё ламинарным. Движение считать установившимся.(R е кр =0,5, ρ гл =1,26 · 10 3 кг/м 3 , ρ св =11,3 · 10 3 г/м 3 , η =1,48 Па·с)

17. Вода течет по круглой гладкой трубе диаметром d =5 см со средней по сечению скоростью =10 см/с. Определить число Рейнольдса R e , для потока жидкости в трубе и указать характер течения жидкости.

18. По трубе течёт машинное масло. Максимальная скорость v max , при которой движение масла в этой трубе остаётся ещё ламинарным, равно 3,2 см/с. При какой скорости v движение глицерина в этой же трубе переходит из ламинарного в турбулентное?(R e =2300, ρ мм =0,9 кг/м 3 , ρ гл =1260 кг/м 3 , η мм =0,1 Па·с, η гл =1,48 Па·с)

19. Стальной шарик диаметром 1 мм падаете постоянной скоростью v =0,185 см/с в большом сосуде, наполненном касторовым маслом. Найти динамическую вязкость касторового масла.( R ст =7870 кг/м 3 , R км =960 кг/м 3)

20. Льдина площадью поперечного сечения S =1 м 2 и высотой Н =0,4 м плавает в воде. Какую работу А надо совершить, чтобы полностью погрузить льдину в воду? Плотность воды ρ в =1000 кг/м 3 , плотность льда ρ л =900 кг/м 3 .

21. Найти добавочное давление р внутри мыльного пузыря диаметром d =10 см. Определить работу А , которую нужно совершить, чтобы выдуть этот пузырь.

22. Определить изменение свободной энергии ΔЕ поверхности мыльного пузыря при изотермическом увеличении его объема от V 1 =10 см 3 до V 2 =2V 1 .

23. Воздушный пузырек диаметром d =2 мкм находится в воде у самой ее поверхности. Определить плотность ρ воздуха в пузырьке, если воздух над поверхностью воды находится при нормальных условиях.

24. Глицерин поднялся в капиллярной трубке на высоту h =20 мм. Определить поверхностное натяжение σ глицерина, если диаметр d канала трубки равен 1 мм.

25. Широкое колено U-образного ртутного манометра имеет диаметр d 1 =4 см, узкое d 2 =0,25 см. Разность Δh уровней ртути в обоих коленах равна 200 мм. Найти давление р , которое показывает манометр, приняв во внимание поправку на капиллярность.

26. В широкой части горизонтально расположенной трубы нефть течет со скоростью v 1 =2 м/с. Определить скорость v 2 нефти в узкой части трубы, если разность Δр давлений в широкой и узкой частях ее равна 6,65 кПа.

27. К поршню спринцовки, расположенной горизонтально, приложена сила F =15 Н. Определить скорость v истечения воды из наконечника спринцовки, если площадь S поршня равна 12 см 2 .

28. Струя воды диаметром d =2 см, движущаяся со скоростью v =10 м/с, ударяется о неподвижную плоскую поверхность, поставленную перпендикулярно струе. Найти силу F давления струи на поверхность, считая, что после удара о поверхность скорость частиц воды равна нулю.

29. Бак высотой Н =2 м до краев заполнен жидкостью. На какой высоте h должно быть проделано отверстие в стенке бака, чтобы место падения струи, вытекающей из отверстия, было на максимальном от бака расстоянии?

30. Из бака водонапорной башни, расположенного на высоте h =10 м, вода по трубе поступает в кран, находящийся вблизи поверхности земли. За какое время τ кран наполнит ведро объемом V=10 л? Диаметр выходного отверстия крана d=1 см. Сопротивлением течению жидкости в трубе и кране пренебречь.

31. Вода протекающая в широкой части горизонтальной трубы, имеет давление р =2 · 10 5 Па, в два раза больше атмосферного давления р 0 , и скорость v 1 =1 м/с (рис.). При каком соотношении диаметров D/d большой и малой трубы вода не будет вытекать из небольшого отверстия, расположенного в верхней части малой трубы?

32. В подвале дома вода отопительной системы поступает в трубу диаметром d 1 =4 см со скоростью v 1 =0,5 м/с под давлением р 1 =3 атм. Каковы скорость течения v 2 и давление в трубке р 2 диаметром d 2 =2,6 см на втором этаже, расположенном на 5 м выше?

33. Определить скорость полета струи из шприца диаметром d =4 см, на поршень которого давит сила F =30 Н. Площадь отверстия шприца много меньше площади поршня, сопротивлением воздуха пренебречь. Плотность жидкости ρ в =1000 кг/м 3 .

34. Цилиндр диаметром D заполнен водой и расположен горизонтально. С какой скоростью v перемещается в цилиндре поршень, если на него действует сила F , а из отверстия в дне цилиндра вытекает струя диаметром d ? Силу тяжести не учитывать. Плотность жидкости ρ .

35. какой скоростью v вытекает вода из маленького отверстия в дне широкого цилиндрического бака в момент времени, когда он заполнен до высоты h ? Какой объем воды Q нужно доливать в бак в единицу времени, чтобы уровень жидкости в баке остался неизменным? Площадь отверстия S .

36. Широкий сосуд с небольшим отверстием в дне наполнен водой и керосином. Пренебрегая вязкостью, найти скорость v вытекающей воды, если толщина слоя воды h 1 , а слоя керосина h 2 . Плотность воды ρ 1 , керосина – ρ 2 (ρ 1> ρ 2 ).

37. На гладкой горизонтальной поверхности стоит сосуд с водой. В боковой стенке сосуда у дна имеется малое отверстие площадью S . Какую силу F нужно приложить к сосуду, чтобы удержать его в равновесии, если высота уровня воды в сосуде равна h ? Плотность воды ρ .